
Bitstream Font Fusion®

5 . 0 a
R e f e r e n c e G u i d e

B

July 2009

Bitstream Font Fusion® 5.0a Reference Guide

Information in this document is subject to change without notice.

BITSTREAM INC. MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Bitstream Inc. shall not be liable for errors herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

© Copyright 1999-2009 Bitstream Inc., Cambridge, MA. All rights reserved. No part of this
document may be photocopied, reproduced, or translated without the prior written consent of
Bitstream Inc.

This document uses the following Bitstream Fonts:
Humanist 521 BT, Humanist 777 extra black, Bitstream Iowan Old Style™, Newspaper Pi, and
Monospace 821.

Bitstream, Font Fusion, and TrueDoc are registered trademarks of Bitstream Inc. and the
Bitstream logo, Dutch, Speedo, Swiss, Zurich, and Iowan Old Style are trademarks of
Bitstream Inc. T2K is a trademark of Bitstream Inc.

Bitstream TrueDoc: U.S. Patent Nos. 5,577,177 and 5,583,978
Bitstream Font Fusion: U.S. Patent No. 6,437,793

Adobe, ATM, Adobe Type Manager, and PostScript are trademarks of Adobe Systems,
Incorporated, and may be registered in some jurisdictions. Apple, Macintosh, and TrueType are
registered trademarks of Apple Computer, Inc. Hewlett-Packard, HP, and PCL are registered
trademarks of Hewlett-Packard Company. Microsoft, Windows, and Windows NT are
registered trademarks of Microsoft Corporation.

All other product or company names are used for identification purposes only, and may be
registered trademarks or trademarks of their respective owners.

Bitstream Inc., 245 First Street, Cambridge, MA 02142
Worldwide phone number: 617-497-6222
OEM Sales Phone number in the U.S. and Canada: 800-522-3668
7/10/09

Table of Contents
CHAPTER 1: FONT FUSION OVERVIEW
General Information . 12

Architectural Overview . 12
Applications & Operating Systems Supported . 12
Font Formats Supported . 13
Multilingual Capabilities . 14
Devices Supported . 15
High-Quality Output. 16

Using the Font Fusion Core. 19

Using the Font Fusion Font Manager . 20
Merging Fonts Dynamically. 20

Using the Font Fusion Cache Manager . 22

CHAPTER 2: GETTING STARTED WITH THE FONT
FUSION CORE

Getting Started . 24
What Files Should I Look at First?. 24
How can I build the Font Fusion demos? . 25
What is the Best Way to Get Started? . 26
What are the Functions in Font Fusion? . 27
Should I Use Public APIs Only? . 28

Allocating Memory . 29

Using Your Own Memory Allocator and De-allocator with Font Fusion 29
The InputStream Object. 30
The tsiMemObject Object . 30
Using One tsiMemObject per Font . 30
If You Have a lot of Fonts Open and Active at the Same Time 30

Bitstream Font Fusion® 5.0a Reference Guide
Assert Statements .32
Optional: Redefining “Assert” .32

Compile-Time Options .33

Errors .42
What Happens When Font Fusion Returns an Error.42
What to DO if Font Fusion Returns an Error .43
Font Fusion Objects You Need to Restart if Font Fusion Returns an Error43

Font Size options .44

Compact Font Formats .44
Compressed Font Formats .46

CHAPTER 3: FONT FUSION CORE API
tsi Functions: Overview .50

The tsiMemObject Object .50
Using One tsiMemObject per Font. .50
Creating and Destroying a Memory Handle .50

tsi Functions .51

tsiMemObject *tsi_NewMemhandler(51
void tsi_DeleteMemhandler(52

InputStream Functions: Overview. .53
The InputStream Object .53
Creating an Input Stream .53
If You Have a lot of Fonts Open and Active at the same Time54
Using Your Own Memory Allocator and
De-allocator with Font Fusion. .54

InputStream Functions .55
InputStream *New_InputStream3(55
InputStream *New_InputStream(56
InputStream *New_NonRamInputStream(56
void PF_READ_TO_RAM(57
void Delete_InputStream(59

sfntClass Functions: Overview. .60
The sfntClass Object .60
4

Chapter 1
ALGORITHMIC_STYLES . 60
T2K_SetBaselineShift(61

sfntClass Functions . 62
sfntClass *FF_New_sfntClass(62
void FF_Delete_sfntClass(63

PlatformID Functions: Overview . 64
The PlatformID. 64
Setting the Platform and Platform-Specific ID . 64
Mapping Table to Use with TrueType and Native T2K Fonts 65
Getting the Font Name. 65

PlatformID Functions . 66
Set_PlatformID(66
Set_PlatformSpecificID(67

T2K Functions: Overview . 68

The T2K Scaler Object . 69
Modifying the Transformation Matrix . 69
T2K_RenderGlyph():
Getting Bitmap and Outline Output . 71
T2K_RenderGlyph(): Hinting . 77
T2K_RenderGlyph(): Rendering Characters and Strings 78
T2K_RenderGlyph(): Sample Code for Rendering Characters and Strings82
Metrics . 86
Using Filters . 89
void T2K_TV_Effects(95
Using Glow Filter . 97
void T2K_CreateGlowCharacter(97
Using Multiple Filters . 99
void T2K_CreateOutlineCharacter(100
Getting the Font Name. 100
Enabling “sbits” . 101

T2K Functions . 102
void DeleteT2K(102
void FF_Set_T2K_Core_FilterReference(102
T2K *NewT2K(103
5

Bitstream Font Fusion® 5.0a Reference Guide
void T2K_ConvertGlyphSplineType(103
void T2K_CreateUnderlineCharacter(104
T2K_KernPair *T2K_FindKernPairs(105
char T2K_FontSbitsAreEnabled(106
char T2K_FontSbitsExists(106
void T2K_GaspifyTheCmds(107
int T2K_GetBytesConsumed(108
uint16 T2K_GetGlyphIndex(108
void T2K_GetIdealLineWidth(108
int T2K_GlyphSbitsExists(111
void T2K_LayoutString(111
uint32 T2K_MeasureTextInX(112
void T2K_MultipleFilter(112
void T2K_MultipleFilter_Add(113
void T2K_MultipleFilter_Delete(114
void T2K_MultipleFilter_Init(114
void T2K_NewTransformation(115
void T2K_PurgeMemory(116
void T2K_RenderGlyph(116
void T2K_SetNameString(119
void T2K_TransformXFunits(119
void T2K_TransformYFunits(120

Functions for Fractional Sizing .122

Functions for SmartScale .124
T2K_SetSmartScale(125

Functions for Vertical Writing .126

Functions for Translating Font Data. .127
unsigned char *ExtractPureT1FromPCType1(127
char *ExtractPureT1FromMacPOSTResources(127

Functions to Force Type1 Encoding .129
T2K_GetT1Encoding(129
T2K_ForceT1Encoding(129

Functions For Use With Stroke-Based Fonts. .131
int32 T2K_GetNumAxes(131
6

Chapter 1
void T2K_SetCoordinate(131

Additional Functions . 133

uint8 *FF_GetTTTablePointer(133
int FF_GlyphExists(134
void FF_ForceCMAPChange(134
ff_ColorTableType *FF_NewColorTable(135
void FF_ModifyColorTable(137
int FF_PSNameToCharCode(138
int FF_SetBitRange255(138

Sample Code . 139

Macintosh . 139
T2K Scaler. 140

CHAPTER 4: FONT MANAGER API
Getting Started with the Font Manager . 144

Why Use the Font Manager?. 144
What Files Should I Look at First? . 145
How Do I Use the Font Manager? . 145
Why Do Font Fusion, the Font Manager, and the Cache Manager Have a
RenderGlyph() Function? . 146
How Does the Cache Manager Know if the Font Manager Should Render a
Glyph? What's the Configuration Requirement for Me to Make These Work
Together? . 146
How Many Fonts Can I Handle at Once? . 147
Are There Any Other Configuration Parameters for the Font Manager?147
Why Does FF_FM_AddTypefaceStream() Take Two Stream Arguments?147
Why Does FF_FM_CreateFont() Include a flushCache Parameter? . . . 148
Is There a Coding Example? . 148

Functions for Creating, Configuring, and Deleting the Font Manager . . . 149
FF_FM_Class *FF_FM_New(149
void FF_FM_AddTypefaceStream(150
void FF_FM_SetPlatformID(150
void FF_FM_SetPlatformSpecificID(151
void FF_FM_SetLanguageID(152
7

Bitstream Font Fusion® 5.0a Reference Guide
void FF_FM_SetNameID(152
void FF_FM_Delete(153

Function for Installing Fonts and Getting Font Information154
enumTypefaceCallback() Function. .154
int FF_FM_EnumTypefaces(154

Functions for Creating and Using Fonts .156
uint16 FF_FM_CreateFont(156
void * FF_FM_SetXYResolution(159
T2K * FF_FM_SelectFont(159
void FF_FM_DeleteFont(160
void FF_FM_RenderGlyph(161

Sample Code .162

CHAPTER 5: CACHE MANAGER API
Getting Started with the Cache Manager. .172

Overview of the Cache Manager .172
If You Want to Write Your Own Cache Manager 173
Why Do Font Fusion, the Font Manager, and the Cache Manager Have a
RenderGlyph() Function? .173

Functions for Creating and Deleting the Cache Manager 174
FF_CM_Class *FF_CM_New(174
void FF_CM_Delete(175

Functions for Working with the Cache Manager. .176
void FF_CM_RenderGlyph(176
int FF_CM_GlyphInCache(177
void FF_CM_Flush(178
void FF_CM_SetFilter(179
FF_CM_Class *FF_CM_SetCacheSize(180
void FF_CM_SetCompDecomp(180

Sample Code .181
8

Chapter 1
CHAPTER 6: FONT FUSION API FOR PRINTER
DEVELOPERS

General Information . 186

Compile-Time Options. 187

Font Types . 188

Callback Functions . 189
int eo_get_char_data(189
int tt_get_char_data(190
metricsInfo 191

Format 16 Font Header Support . 192
FF_SetVertPos(193

Font Information Table . 194
FIT File Structure . 194
Using FIT at Run-Time . 210

CHAPTER 7: TEXT FLOWS
Overview . 216

Font Fusion Core . 217

Font Manager. 218

Cache Manager . 219

Font Manager and Cache Manager . 220

CHAPTER 8: ERROR CODES
Font Fusion Core Error Codes. . 222

Font And Cache Manager Error Codes . 224

CHAPTER 9: FONT FUSION FAQ
Performance Tuning Tips . 226

FAQ. 227
9

Bitstream Font Fusion® 5.0a Reference Guide
10

1F o n t F u s i o n
O v e r v i e w 1

Topics

General Information

Using the Font Fusion Core

Using the Font Fusion Font Manager

Using the Font Fusion Cache Manager

Using the Font and Cache Managers

Bitstream Font Fusion® 5.0a Reference Guide
General Information
Font Fusion is Bitstream's premier font rendering subsystem, rendering high-
quality characters in any format, at any resolution, on any platform or device.
Font Fusion has been designed from the ground up to support consumer
electronics devices, mobile phones, PDAs, set-top boxes, digital TVs, printers,
graphics applications, and embedded systems. Delivering exceptional text
rendering on all platforms and devices, Font Fusion also provides the best
possible text output for TV of any solution on the market today. Font Fusion
marks the convergence of the Bitstream TrueDoc® and T2K® rasterizers, available
in an advanced, object-oriented architecture.

Architectural Overview

Font Fusion includes three components:

Core Font Engine
Font Manager (optional)
Cache Manager (optional)

The Core Font Engine allows your application to render high-quality glyphs from
various font formats. The Font Manager supports multiple fonts and font
fragments simultaneously, while the Cache Manager boosts overall system
performance by employing a high-speed cache to take advantage of memory
resources.

Applications & Operating Systems
Supported

Font Fusion supports a multitude of applications and operating systems,
including:

Cross-platform applications
Web (HTML) applications
Macintosh® & Windows®

Linux® & UNIX®

Embedded operating systems
Real time operating systems
12 Font Fusion Overview

Chapter 1
Font Formats Supported

Font Fusion can render characters from all of the following font formats:

Type 1
TrueType®

TrueType collections
Microsoft® and Adobe® OpenType®

Compact font format (CFF)/Type 2
TrueDoc portable font resources (PFRs)
Bitstream Speedo™
T2K
Embedded bitmaps (TrueType, TrueDoc, and T2K)
Font Fusion Stroke (FFS)
Dfont, Mac rfork font format
PCL Encapsulated Outline (PCLeo)
PCL Encapsulated Truetype Outline (PCLetto)
Bitmap Distribution Format (BDF), Windows FNT Format

A traditional Chinese font, in FFS format, containing over 13,000
characters, occupies less than 0.5MB!
Font Fusion Overview 13

Bitstream Font Fusion® 5.0a Reference Guide
Multilingual Capabilities

Font Fusion can render any character shape (regardless of the complexity of the
shape), is fully compatible with double-byte non-Latin fonts, and supports
languages written vertically or right to left. Font Fusion can also render PFR
(portable font resource) data stored locally or downloaded from other sources.
This gives an interactive TV system, for example, the ability to support multiple
languages without embedding large amounts of font data in a set-top box.

A sample of international characters recorded for a portable font resource
(PFR) and regenerated on screen in an Internet browser. The zoomed-in
box illustrates anti-aliasing capabilities. (Note the gray pixels at the edges
of the character.)
14 Font Fusion Overview

Chapter 1
Devices Supported

Bitstream Font Fusion can output characters to any bitmap device. In addition,
Font Fusion can optimize the output quality for these devices:

Color LCD displays
Grayscale monitors
Black-and-white monitors
TV and high-definition TV (HDTV)
Set-top boxes
Continuous tone printers
Embedded devices
Internet appliances

Set-top box architecture for a Font Fusion-enhanced implementation. The
Font Fusion font renderer and a core set of PFR fonts stored in ROM allow
for the display of both static and dynamic text from a variety of sources,
including multilingual documents.
Font Fusion Overview 15

Bitstream Font Fusion® 5.0a Reference Guide
High-Quality Output

Font Fusion produces well-formed characters regardless of output size or
resolution.

Font Fusion contains the following enhancements to ensure the highest quality
output on a variety of devices:

anti-aliasing
filtering and other post-processing
subpixel positioning

Font Fusion includes an anti-aliasing (sometimes called grayscaling) output
module, which ensures smooth, well-defined character edges at all resolutions.

The anti-aliasing technology developed by Bitstream for Font Fusion
provides for layers of pixels of 128 to 256 shades of gray (or other colors)
to soften the hard edges that often result when character outlines are fixed
to a grid pattern.
16 Font Fusion Overview

Chapter 1
Your application has the unique capability of supplying a filter function “plug-in”
for post-processing of images that the Font Fusion Core produces. The Core
creates bitmaps in either 1-bit or 8-bit depth (alpha values range from 0 to 126).
You can apply Gaussian fuzz-filtering, smearing, colorizing, or even texture
mapping to these bitmaps.

Using Font Fusion, you can take a single-color character and create a
multiple-color character, complete with a border. The border is anti-
aliased to the background, and the interior color is anti-aliased to the
border.

With its subpixel positioning technology, Font Fusion can accurately adjust and
control the placement of characters. Previously, outlines of character shapes were
simply fitted to character grids in an output device (such as a laser printer or a
computer screen). If a pixel fell within the outline of a character shape, the pixel
was turned on. If not, the pixel was left off.

When combined with anti-aliasing (grayscale output module), Font Fusion can
control the placement of characters down to 1/64 of a pixel in both x and y
dimensions. This is done by first rendering the character in a 64-pixel grid, then
down-sampling the glyph to a lower resolution. This can solve many problems
that occur when composing text on a low-resolution device, such as a TV screen.
This also allows for exceptional character spacing and quality when text is
rotated or displayed on a slanted baseline.
Font Fusion Overview 17

Bitstream Font Fusion® 5.0a Reference Guide
NOTE: It is recommended that you use subpixel positioning only when rotating
text.

A common problem encountered in the display of text on low-resolution
screens. Note that the baselines of the words are bouncing, and that certain
characters (most notably the ‘u’ in ‘Source,’ the ‘c’ in code and the ‘pr’ in
‘provide’) have floated up. Also note the erratic spacing among the letters
‘hnolog’ in ‘technology.’

Font Fusion uses subpixel positioning to correct these problems. Subpixel
positioning allows text to be placed more accurately. This sample shows
the results when the text used in the previous picture has 1/16 pixel
positioning applied. (Note that it corrects the baseline and spacing
problems from the previous sample.)
18 Font Fusion Overview

Chapter 1
Using the Font Fusion Core
Font Fusion is extremely small and fast. To achieve this, Bitstream abstracts the
optional components—the Font and Cache Managers—from the Core.

The Core knows nothing about the Font Manager, and only enough about the
Cache Manager to write data directly into the cache buffer, further increasing
performance. In this design also, binding the Core to the Cache Manager takes
place only at run-time.

The Core Engine is modelled on T2K, built by Sampo Kaasila, Bitstream Vice
President of Research and Development. Sampo created T2K while working for
Type Solutions, Inc., now a Bitstream company. Sampo has vast experience in
font technology, as he was the lead engineer behind the TrueType technology
while at Apple Computer, Inc.

If you are familiar with T2K, the Core continues to work exactly as it did before.
The Font Manager and Cache Manager are strictly add-on layers. If you use both
the Font Manager and the Cache Manager, the Cache Manager makes calls
through the Font Manager to the Core only to manage multiple font fragments.

Bitstream designed both the Font and Cache Managers so that they are
consistent with the Core in presenting an API to your application that uses C++.
Font Fusion Overview 19

Bitstream Font Fusion® 5.0a Reference Guide
Using the Font Fusion Font
Manager

With the Font Manager, your application environment can install any number of
font binary objects (input streams). These input streams, in the cases of
TrueType Collections and TrueDoc PFRs, may contain more than one scalable
typeface. They may also contain fragments of scalable typefaces that the Font
Manager merges dynamically. This dynamic merger can take place across type
technologies, as well.

Up to 64K input streams, 64K physical font fragments (the internal limit), 64K
logical (merged) typefaces, and 64K dynamic fonts can exist in the Font Manager
simultaneously if there is enough memory to support the Font Manager’s
internal data structures.

Once the Font Manager builds its internal data structures from installed input
streams, your application can find out what merged typefaces are available and
choose one to create a dynamic font cookie (a typeface, a transformation, and an
optional algorithmic style), which you can then activate with the Core.

The Font Manager’s RenderGlyph() function allows the Font Manager to
merge multiple font fragments. It walks through each fragment of a merged
typeface until the Core generates the character.

Merging Fonts Dynamically

Your application deals with three types of fonts when rendering characters.

Physical fonts, such as all the characters in Swiss 721™ or a subset of characters
in Swiss 721, contain outline definitions in scalable form. They’re the base font
component of a font. They can include the entire font or a subset of it, i.e., a font
fragment.

Logical fonts are merged “super” fonts made up of one or more physical font
fragments. Physical and logical fonts are only concerned with outline font
resources.
20 Font Fusion Overview

Chapter 1
Dynamic fonts—such as Swiss 721, 10 point—are fonts with particular
attributes that Font Fusion creates on the fly. Font Fusion renders characters
using the outline data in the physical fonts.

NOTE: There is only one issue you need to note when you use both the Font and
Cache Managers: the Cache Manager must make all requests for characters not
already cached via the Cache Manager’s RenderGlyph() function,
FF_CM_RenderGlyph(). This allows you to support the dynamic merging of
fonts.
Font Fusion Overview 21

Bitstream Font Fusion® 5.0a Reference Guide
Using the Font Fusion Cache
Manager

With the Cache Manager, your application can use the Core to generate glyph
images directly into the buffer of a high-speed cache mechanism.

Your application creates a new Cache Manager by calling the appropriate
constructor. The only variable you pass to this function is the amount of memory
that the cache will live in. To create characters, your application simply calls the
Cache Manager to render the glyph. Data passed into this function include the
font code, character code, subpixel positioning information, and the level of
hinting you want.

In addition, you must pass in the current Scaler object your application holds.
This scaler becomes a repository for all the information about the created bitmap
as well as the image data itself.

The Cache Manager always appears to render the glyph, but first it looks in the
cache buffer for a glyph matching the request. If it finds one, it makes it appear to
your application that the Core has just rendered the glyph. In this way, your
application can either call the Core directly for any glyphs, or call the Cache
Manager to cache the glyphs. Your application’s PrintChar(), or “BLT,” of the
glyph image is the same either way. The Core always delivers the image in the
current Core scaler context that your application owns, either as the user of the
Cache Manager by finding the image in the cache, or by creating the image,
storing it in the cache, and exposing it to your application. Whichever method
the Core uses, it is completely abstracted from you.

The only other major operation that your application can initiate is flushing the
cache. All this function requires is a pointer to the cache that you want to flush.

NOTE: There is only one issue you need to note when you use both the Font and
Cache Managers: the Cache Manager must make all requests for characters not
already cached via the Cache Manager’s RenderGlyph() function,
FF_CM_RenderGlyph(). This allows you to support the dynamic merging of
fonts.
22 Font Fusion Overview

2G e t t i n g S t a r t e d
w i t h t h e F o n t
F u s i o n C o r e 1

Topics

Getting started

Allocating memory

Assert statements

Compile-time options

Errors

Font size options

Bitstream Font Fusion® 5.0a Reference Guide
Getting Started
When building Font Fusion into your application, you should first decide on the
components that you will be integrating in addition to the core:

The Cache Manager
The Font Manager

The Font Fusion Core is required in any implementation. The demos can aid you
in deciding what other components you need. You should first look at the demo
that combines both the Cache Manager and Font Manager components. After
looking at the demos, you should consider what options you need in your
implementation, such as:

Technologies (PFR, OTF, TTF, Speedo, CFF, Type 1, Stroke Based Fonts)
Bitmap output format (monochrome, grayscale, LCD)
Hinting (Native hinting, auto hinting, no hinting)

Once you have identified all the options that you want to build, for example, if
you decided you need the Cache Manager, a TrueType font renderer, and auto
hinting, you should type these project settings into the Size demo to see a fairly
accurate estimate of what the size is going to be of your Font Fusion
implementation.

Font Fusion is object-oriented, even though the actual implementation uses
ANSI C. This means that you will be creating a number of objects when you use
Font Fusion. All classes have a constructor and destructor. It is important that
you call the proper destructor when you are done with a particular object.

What Files Should I Look at First?

We recommend that you first familiarize yourself with t2k.h. This file contains
documentation, a coding example, and the actual Font Fusion API.

Second, you should look at config.h. Usually, this is the only file you need to
edit. The file configures Font Fusion for your platform, enables or disables
optional features. There are many features included in this file. Turn on only
required features in order to minimize the size of the Font Fusion Core.

Run the Size demo with the version of config.h that you intend on using in
order to get an idea of the size of your implementation.
24 Getting Started with the Font Fusion Core

Chapter 2
How can I build the Font Fusion
demos?

Font Fusion SDK includes a set of fully functional demos to illustrate how the
Font Fusion APIs and individual components can be used. You can compile and
run most of the demos on the Microsoft Windows/Macintosh operating systems
as well as in GNU environments such as Linux.

Windows Build Environment

Each demo directory contains a Visual C++ project file (.dsp) that you can use
to run the demos. You can build the demos collectively by executing the
AllWinDemo.dsp file at $(ROOT)/demo/All_Demo or individually by opening
the *.dsp file at the respective demo directory.

Mac Build Environment

Issue the "make" command at $(ROOT)/demo/DEMO_NAME to build the demo.
To clean all the *.o and executable files, use the "make clean" command at
$(ROOT)/demo/DEMO_NAME.

You can also run the Font Fusion demos by opening the *.xcodeproj file at
$(ROOT)/demo/DEMO_NAME.

GNU Build Environment

To make the command line build convenient, the build procedure on the GNU
platform is hierarchical and modular. Issue the "make" command at $(ROOT)/
demo/DEMO_NAME to build the demo.

To clean all the *.o and executable files, use the "make clean" command at
$(ROOT)/demo/DEMO_NAME.

The table below summarizes the functionality for each of the demos included:

DEMO_NAME Description

t2k_demo The Font Fusion core demo

cm_demo Demo to illustrate Cache Manager implementation

fm_demo Demo to illustrate Font Manager implementation
Getting Started with the Font Fusion Core 25

Bitstream Font Fusion® 5.0a Reference Guide
What is the Best Way to Get Started?

First, configure config.h. Refer to the variables listed in “Compile-Time
Options” on page 33 and enable or disable your options as needed.

Next, look at the coding example below. We recommend that you start “outside
in,” by creating the outermost object, followed by the objects it contains. See
Chapter 7 for text flows of this process.

Creating and destroying a memory handle.

First create and destroy a Memhandler object. (This is the “outermost” object.)

/* Create the Memhandler object. */
tsiMemObject *mem = NULL;
mem= tsi_NewMemhandler(&errCode);
assert(errCode == 0);

/* Destroy the Memhandler object. */
tsi_DeleteMemhandler(mem);

Creating an input stream.

Next, create an InputStream object.

/* Create the Memhandler and InputStream objects. */
tsiMemObject *mem;
unsigned char *data;
unsigned long length;
int *errCode;
tsiMemObject *mem = NULL;
InputStream *in = NULL;
mem= tsi_NewMemhandler(&errCode);

fm_cm_demo Demo to illustrate the Cache Manager + Font Manager
implementation

size_demo Demo to estimate the size of the Font Fusion
implementation

pr_demo Demo to validate the working of PCL and SFS font

otf_demo Demo to illustrate the ‘vert’ GSUB OpenType feature
for vertical writing

DEMO_NAME Description
26 Getting Started with the Font Fusion Core

Chapter 2
assert(errCode == 0);
in = New_InputStream3(mem, data, length, &errCode);
assert(errCode == 0);

/* Destroy the InputStream object. */
Delete_InputStream(in, &errCode);

/* Destroy the Memhandler object. */
tsi_DeleteMemhandler(mem);

Creating other objects.

Next, create the T2K scaler and sfntClass objects.

What are the Functions in Font
Fusion?

Font Fusion functions are organized according to their roles, described in the
sections below.

Core Functions:

The main core functions necessary to render a character:

The tsiMemObject object handles all memory allocation, de-allocation, and
re-allocation.
The InputStream object provides a level of abstraction for the core by
exposing certain methods used by Font Fusion to access the data. Font
Fusion does not need to know if the data is in memory, on a disk, on a
network, etc.
The sfntClass is an internal class that represents a font.
The T2K scaler object represents and instance of the font scaler. The font
scaler’s main task is to produce good looking bitmap images for characters at
different sizes and transformations.
The T2K_NewTransformation() allows you to set the transformation
matrix and x and y resolutions when you render characters and strings.

Additional core functions include:

ExtractPureT1FromPCType1() and
ExtractPureT1FromMacPOSTResources(), which translate font data
into formats which Font Fusion can process.
Getting Started with the Font Fusion Core 27

Bitstream Font Fusion® 5.0a Reference Guide
FF_GetTTTablePointer(), which returns a pointer to a memory buffer
containing a TrueType table.
FF_GlyphExists(), which checks for the existence of characters in a font
FF_NewColorTable(), which supports color combinations other than
black and white.
FF_PSNameToCharCode(), which translates PostScript character names to
character code.
Set_PlatformID, which defines the computer platform which will use the
font.
Set_PlatformSpecificID, which defines the specific character map
within a TrueType font.
FF_ForceCMAPChange(), which forces the changing of the TrueType
character map.

Should I Use Public APIs Only?

You should only use functions visible in t2k.h. If you need to use something
else, then let us know. Do not rely on any functions or methods outside of Font
Fusion, because they may change from release to release.
28 Getting Started with the Font Fusion Core

Chapter 2
Allocating Memory
This section discusses the following topics related to memory allocation.

Using your own memory allocator and de-allocator with Font Fusion
The InputStream object
If you have a lot of fonts open and active at the same time
The tsiMemObject object
Using tsiMemObject per font

Using Your Own Memory Allocator
and De-allocator with Font Fusion

config.h allows you to remap allocation, re-allocation, and deletion to anything
you want. Refer to the first three defines in config.h, which are:

/*** #1 ***/
#define CLIENT_MALLOC(size)malloc(size)
/* #define CLIENT_MALLOC(size)AllocateTaggedMemory-
NilAllowed(n,"t2k") */

/*** #2 ***/
#define CLIENT_FREE(ptr)free(ptr)
/* #define CLIENT_FREE(ptr)FreeTaggedMemory(p,"t2k") */

/*** #3 ***/
#define CLIENT_REALLOC(ptr, newSize)realloc(ptr, newSize
)
/* #define CLIENT_REALLOC(ptr, newSize)ReallocateTagged-
MemoryNilAllowed(ptr, size, "t2k") */

The config.h file also contains the ENABLE_CLIENT_ALLOC compile
conditional, which enables the allocation/re-allocation/de-allocation through the
external memory managers. The tsiMemObj and cache manager APIs under this
macro enable the client itself to handle all the memory allocation/re-allocation/
de-allocation tasks.
Getting Started with the Font Fusion Core 29

Bitstream Font Fusion® 5.0a Reference Guide
The InputStream Object

The InputStream object provides a level of abstraction for the core. Basically,
the InputStream object exposes certain methods that Font Fusion uses to
access the data.

This means that Font Fusion does not need to know if the data is in memory, on
a disk, on a network, etc. It also provides more robustness. For instance, the
InputStream object checks for out-of-bounds read attempts.

This error checking, together with the abstraction InputStream provides,
produces a more solid and robust design and therefore a better product.

The tsiMemObject Object

tsiMemObject is an object that handles all memory allocation, de-allocation,
and re-allocation.

We do it this way, instead of making direct calls to the operating system, because
tsiMemObject does a lot of error checking. For instance, tsiMemObject puts
special markers both before and after allocated memory so that we can detect any
attempts to write outside the allocated memory. It also detects any memory leaks
and attempts to free already-freed memory.

In this way, tsiMemObject provides a solid foundation for the product.

Using One tsiMemObject per Font

We could have shared the tsiMemObject among all open fonts, but we get
better performance using only one tsiMemObject per font.

The current implementation of tsiMemObject also has a maximum limit on the
number of pointers it can allocate.

If You Have a lot of Fonts Open and
30 Getting Started with the Font Fusion Core

Chapter 2
Active at the Same Time

This should not cause any problems. You should have one tsiMemObject per
font.

You can choose to keep multiple fonts open simultaneously. You can also decide
to use one or more Font Fusion scalers simultaneously. Or you could decide to
only open one font at a time.

You can also use memory-based fonts when you create the InputStream class
or you can use disk-based fonts.

These choices trade off memory use and speed. For instance, disk-based fonts do
not require any memory allocation but take longer to access.
Getting Started with the Font Fusion Core 31

Bitstream Font Fusion® 5.0a Reference Guide
Assert Statements
Assert statements are in the code to detect and prevent programmer errors in
pre-release and debug builds.

In a release build, you need to turn off assert statements in config.h to
increase speed and to reduce the code size.

However, in debug builds, leave it on, to ensure that everything is working
properly.

Optional: Redefining “Assert”

You have the option of redefining “assert” by adding two lines in the config.h
file.

/*** #4 ***/
/* #undef assert (line1) */
/* Just leave it for some clients, OR */
/* #define assert(cond) CLIENT_ASSERT(cond), OR for a _FINAL_ build
ALWAYS define as NULL for maximum speed */
/* #define assert(cond) NULL /*
#undef assert
#define assert(cond) NULL
*/
32 Getting Started with the Font Fusion Core

Chapter 2
Compile-Time Options
The many features offered in Font Fusion can be enabled or disabled by
modifying the ff_user.h include file or externally by setting the compile-time
options to zero for OFF, or one for ON. For example, you can type
ENABLE_NATIVE_TT_HINTS=1 to turn on native Truetype hinting, or
ENABLE_NATIVE_TT_HINTS=0 to turn it off. The list of available compile-time
options can be found in the config.h file. All features are disabled by default
except for the core code, ENABLE_NATIVE_TT_HINTS,
ENABLE_NON_ZERO_WINDING_RULE, and ENABLE_CACHING_EBLC. Do not
use the option ENABLE_T2KE, as it is reserved for future development.

Many features in Font Fusion increase ROM and RAM needs when used, so we
recommend that you enable only the ones you intend to use, particularly if you
need to conserve memory in your application. The table below lists approximate
sizes for each feature. Use the Size demo to estimate the size of your Font Fusion
implementation.

Core and Components Description Size

Font Fusion Core (minimum) Includes the core with no other options
specified.

35K

Font Fusion Core (default) Includes the core,
ENABLE_NATIVE_TT_HINTS,
ENABLE_MEM_VALIDATION, and
ENABLE_NON_ZERO_WINDING_RULE.

55K

Font Fusion (including everything) Includes the core and all options ON 240K

Cache Manager Size of the Cache Manager component 4K

Font Manager Size of the Font Manager component 8K

Options: Allocating Memory and Assert
Statements Description Size

CLIENT_MALLOC See “Allocating Memory” on page 29. N/A

CLIENT_FREE See “Allocating Memory” on page 29. N/A

CLIENT_REALLOC See “Allocating Memory” on page 29. N/A

CLIENT_ASSERT See “Assert Statements” on page 32. N/A
Getting Started with the Font Fusion Core 33

Bitstream Font Fusion® 5.0a Reference Guide
ENABLE_CLIENT_ALLOC Enable this macro to allow having third
party allocator/re-allocator/de-allocator
methods to handle allocation, re-allocation,
and de-allocation of memory for the
tsiMemObject and cache manager.

N/A

ENABLE_MEM_VALIDATION Ensures memory validation. This macro is
ON by default.

3K

Options: Library Functions Description Size

CLIENT_STRLEN Returns the length of the string. Use if the
default string function, strlen() is not
available or needs to be changed for the
target platform.

N/A‘

CLIENT_STRCMP Compares the strings. Use if the default
string function, strcmp() is not available
or needs to be changed for the target
platform.

N/A

CLIENT_STRNCMP Compares at most count characters of two
strings. Use if the default string function,
strncmp() is not available or needs to be
changed for the target platform.

N/A

CLIENT_SETJMP Saves the stack context/environment in
env for later use by CLIENT_LONGJMP. Use
if the standard library function, setjmp()
is not available or needs to be changed for
the target platform.

N/A

CLIENT_LONGJMP Restores the environment saved by the last
call of CLIENT_LONGJMP with the
corresponding env argument. Use if the
standard library function, longjmp() is
not available or needs to be changed for the
target platform.

N/A

CLIENT_JMPBUF Specifies the buffer used by the
CLIENT_SETJMP and CLIENT_LONGJMP
routines to save and restore the program
environment. Use if the standard buffer,
jmp_buf is not available or needs to be
changed for the target platform.

N/A

Options: Layout & Kerning Description Size
34 Getting Started with the Font Fusion Core

Chapter 2
ENABLE_LINE_LAYOUT Enable if you plan to use
T2K_FindKernPairs() or
T2K_MeasureTextInX().

1K

ENABLE_KERNING Enable if you plan to use
T2K_FindKernPairs() or
T2K_MeasureTextInX().

.75K

LAYOUT_CACHE_SIZE somesize This option speeds up
T2K_MeasureTextInX(). Enable only if
you also enable both
ENABLE_LINE_LAYOUT and ENABLE
KERNING, and you plan to use
T2K_MeasureTextInX(). Note that Font
Fusion consumes eight times somesize
for the cache.

N/A

Options: Algorithmic Styles Description Size

ALGORITHMIC_STYLES Use with FF_New_sfntClass() to enable
algorithmic styles, such as emboldening.

1.5K

Options: Emboldening Description Size

ENABLE_2D_EMBOLD Enables the 2-degree emboldening along
both x-and y- direction.

<1K

ENABLE_CHECK_CONTOUR_DIRECTION Enable this macro to check the contour
direction for glyph outlines. Use only when
the contour directions are not verified or
known. Enabling this macro adds to the
performance cost of the rendering engine,
where the performance loss incurred is
about 6 - 10%.

<2K

ENABLE_POSTHINT_ALGORITHMIC_STYL
E

Enables emboldening algorithmic style post
hinting.

<1K

Options: Font Support Description Size

ENABLE_T1 Enable if you need Type 1 font support. 16.1K

ROM_BASED_T1 Disable this option to save memory if Type
1 fonts are not in ROM (to disable,
comment the option out or remove it).

N/A

ENABLE_MAC_T1 Enable if you have also defined ENABLE_T1
and you need Macintosh Type 1 font
support for the Macintosh platform.

not
avail-
able
Getting Started with the Font Fusion Core 35

Bitstream Font Fusion® 5.0a Reference Guide
ENABLE_CFF Enable if you need Compact Font Format(
CFF)/Type 2 font support.

19.7K

ENABLE_OTF Enable if you need OpenType Font (OTF)
format support. OTF is an extension of
TrueType, with additional tables and the
ability to support a CFF table. In order to
get full OpenType font support you must
enable OTF and CFF.
An OpenType font should have the .otf file
extension if it has CFF data that is going to
be used, but if not, for backwards-
compatibility with older versions of the
Windows operating system, it should have
a .ttf file extension.

.35K

ENABLE_ORION Enable if you need to support entropy-
encoded Font Fusion fonts (i.e., compact
Kanji fonts, not stroke-based fonts).

N/A

ENABLE_T2KS Enable if you need to support stroke-based
fonts.

11.5K

ENABLE_SPD Enable if you need Bitstream Speedo™ font
support.

10.0K

ENABLE_PFR Enable if you need TrueDoc® PFR (portable
font resource) font support.

16.8K

ENABLE_WINFNT Enable if you need Windows FNT font
support.

15K

ENABLE_SBIT Enable if you need embedded bitmap font
support. Currently, Font Fusion supports
embedded bitmaps in TrueType, Native
T2K, and TrueDoc PFR formats.

11.9K

ENABLE_SBITS_TRANSFORM Enable to support the transformation (as
scaling/obliquing) of bitmap fonts.

N/A

ENABLE_SBITS_COMPRESSION Enable if you need compressed CJK bitmap
font support.

N/A

ENABLE_BDF Enable if you need Bitmap Distribution
Format (BDF) font support.

28K

COMPRESSED_INPUT_STREAM Enable if you intend to use compressed
fonts and need compressed font processing.

4K
36 Getting Started with the Font Fusion Core

Chapter 2
ENABLE_MAC_RFORK Enable if you intend to include Mac font
suitcase (Dfont support).

< 1K

Options: OpenType Features Description Size

ENABLE_OPENTYPE_VERT Enables the GSUB OpenType vert feature
that replaces default glyph forms with
variants adjusted for vertical writing.
Core Panorama OTF modules are included
under an optional package to provide
OpenType processing support. The current
implementation supports OpenType vert
GSUB feature, but can be extended to
support other OpenType features as well.

20K

Options: Optimized PFRs Description Size

ENABLE_2DEGREE_OPTIMIZED_PFR Enables the support for enhanced and
optimized 2-degree PFR format.

<1K

ENABLE_PSEUDOFONT_SUPPORT Enables the pseudo-italic faces support,
where the pseudo-italic faces are rendered
from corresponding Regular or Bold
typefaces at a fixed oblique angle.

<1K

Options: Font Mapping Description Size

ENABLE_T1_FORCE_ENCODING Enable to include the ability to force Type 1
font mapping to Standard or ISOLatin1
encoding.

5K

Options: Unicode Support Description Size

ENABLE_UNICODE_32_SUPPORT Enable to support 32-bit TrueType character
maps (format 8, 10 and 12).

5K

Options: Anti-Aliasing Description Size

ENABLE_GASP_TABLE_SUPPORT Enable if you plan to use
T2K_GaspifyTheCmds().

.5K

Options: “Seat-Belts” Mode Description Size
Getting Started with the Font Fusion Core 37

Bitstream Font Fusion® 5.0a Reference Guide
USE_SEAT_BELTS This option is a more secure mode of
operation for supporting TrueType fonts
that don't conform perfectly to the
TrueType Font Specification. It is enabled
by default. You may disable the seat belts
option by commenting it out or removing
it.

5K

Options: SmartScale Description Size

ENABLE_SMARTSCALE Enable if you need the SmartScale feature
that “fits” the glyph within fixed screen
parameters.

2K

Options: Fractional Size Description Size

ENABLE_FRACTIONAL_SIZE Enables the fractional size support. The
enhanced light-weight, processor-friendly
hinting process in fractional mode provides
crisp character output.

<1K

Options: Accurate Font Metrics Description Size

ENABLE_EXTRA_PRECISION Enable this option to use a more precise
and accurate value for advance width. If
enabled Font Fusion calculates the advance
width with float-point arithmetic.

<1K

Options: Filter Functions Description Size

ENABLE_UNDERLINEFILTER Enable this option to use the
T2K_CreateUnderlineCharacter()
function described on page 104.

4K

ENABLE_OUTLINEFILTER Enable this option to use the
T2K_CreateOutlineCharacter()
function described on page 100.

<1K

ENABLE_MULTIPLE_FILTERS Enable this option to use the multiple filter
functions described in “Using Multiple
Filters” on page 99.

< 1K

Options: Hinting Description Size

ENABLE_NATIVE_TT_HINTS Enable if you need native TrueType hint
support. Leave this option on if you plan to
use extended LCD modes. This is enabled
by default.

19.4K
38 Getting Started with the Font Fusion Core

Chapter 2
ENABLE_NATIVE_T1_HINTS Enable if you need native Type 1 hint
support, or if you plan to use Type 1 fonts
with extended LCD modes.

22.4K

ENABLE_AUTO_GRIDDING Enable if you want run-time, auto-hinting
(gridding) support.
Do not enable this option if you only need
TV_MODE, which is ideal for TV if you use
integer metrics and grayscale.
Size for TrueType

24.2K

Size for Type 1 23.8

ENABLE_AUTO_GRIDDING_CORE Enable only if you plan to use LCD modes
2-4 or TV mode. This option is not needed
for extended LCD modes. If you use LCD
modes 3 or 4, you must also turn on
ENABLE_NATIVE_TT_HINTS for TrueType
fonts, or ENABLE_NATIVE_T1_HINTS for
Type 1 fonts. For best-quality output on
TVs or LCD devices, use T2K_TV_MODE_2.
For best-quality output on LCD devices,
use T2K_LCD_MODE_4.

see
above

Options: Curve Conversion Description Size

ENABLE_FF_CURVE_CONVERSION Enable if you want to use the function
T2K_ConvertGlyphSplineType(),
documented in “void
T2K_ConvertGlyphSplineType(” on page
103.

5.32K

ENABLE_STRKCONV Set the default to 32 lines. This improves
the performance of the stroke font
processor at 32 lines and below. At or near
32 lines (but not above 32 lines), anomalies
in quality appear because of the high-speed
method that Font Fusion uses.

3.5K

Options: For Scan Converter Description Size

ENABLE_DROPOUT_ADAPTATION Enable this option to have the best fit
bitmap data in subsequent render calls. It
enables the dropout control adaptation in
scan converter. This should be by default
turned ON unless exact bitmaps and
metrics are desired in all render calls
without any dropout adaptation.

<1K
Getting Started with the Font Fusion Core 39

Bitstream Font Fusion® 5.0a Reference Guide
ENABLE_MORE_TT_COMPATIBILITY Enable this option to get more pixel-for-
pixel compatibility with industry-standard
scan converters used to render TrueType
fonts in Windows and on the Macintosh.
Only define this option if rendering
TrueType fonts on black-and-white, low-
resolution devices.

1.6K

MAKE_SC_ROWBYTES_A_4BYTE_MULTIPLE Enable this option to get the scan converter
to pad all bitmap rows to four-byte
multiples.

N/A

REVERSE_SC_Y_ORDER Enable this option to force the y-axis to go
up, not down, in bitmaps.

N/A

Options: Non-RAM, -ROM Fonts Description Size

ENABLE_NON_RAM_STREAM Enable if you need non-RAM or non-ROM
resident fonts. This allows you to leave
fonts on a disk, a server, and so on.

5.1k

Options: Output Modes Description Size

ENABLE_LCD_OPTION Enable if you need to use the standard LCD
modes (2-4).

NOTE: Since the extended LCD modes
require a different command option to be
turned on, your application can use both,
if necessary.

4.1K

ENABLE_EXTENDED_LCD_OPTION Enable if you need to use the extended LCD
modes (horizontal or vertical RGB or BGR).

8K

Options: Printer Fonts Description Size

ENABLE_PCL Enable this option to process scalable
Intellifont® fonts that have been
downloaded to a Hewlett-Packard® printer
or printer emulation as encapsulated
outlines.
Bitstream’s font reader for this format is
included in the source modules
pclread.c and pclread.h.
When using ENABLE_PCL, you need to
write a callback function,
eo_get_char_data(). See Chapter 6 for
instructions.

10K
40 Getting Started with the Font Fusion Core

Chapter 2
ENABLE_PCLETTO Enable this option to process scalable
TrueType fonts that have been downloaded
to a Hewlett-Packard printer or printer
emulation as encapsulated outlines.
No additional font reader module is
required.
When using ENABLE_PCLETTO, you need
to write a callback function,
tt_get_char_data(). See Chapter 6 for
instructions.

.8K

Options: Caching Macro Description Size

ENABLE_CACHING_EBLC Enable this option to cache the entire
Embedded Bitmap Location (EBLC) table
into memory during the
FF_New_sfntClass() call.

< 1K

ENABLE_32BIT_CACHE_TAG Enables the 32-bit font code for cache. N/A

Options: Cache Size Description Size

ENABLE_COMMON_DEFGLYPH Enable this option to cache one default
missing glyph character rather than
separate instances for each missing
character requested.

< 1K

ENABLE_CACHE_COMPRESSION Enable this option to turn ON run-length
encoding compression in the cache
manager. Use the
FF_CM_SetCompDecomp() function to
use your own compression algorithms for
the cache manager. See page 180 for details.

< 1K

ENABLE_CACHE_RESIZE Enable this option to use the
FF_CM_Class
*FF_CM_SetCacheSize() function,
documented on page page 174.

< 1K

Options: Error Handling Description Size

ENABLE_CLIENT_ERROR Enable to make Font Fusion call the OEM
implemented method before emergency
shutdown.

N/A
Getting Started with the Font Fusion Core 41

Bitstream Font Fusion® 5.0a Reference Guide
Errors
This section discusses the following topics related to errors.

What happens when Font Fusion returns an error
What to do if Font Fusion returns an error
Font Fusion objects you need to restart if Font Fusion returns an error

What Happens When Font Fusion
Returns an Error

When a fatal error is encountered, Font Fusion returns an error code
appropriately and exits without performing any other work, except for any
cleanup it needs to do. Font Fusion automatically frees up all memory and
deletes all of its objects when it encounters an error. All references to Font
Fusion objects become invalid; they can no longer be used.

Font Fusion requests user intervention after an unexpected fatal error occurs, as
the user needs to restart all the objects that shared the same the tsiMemObject.

NOTE: Please note that Font Fusion does not rely on asserts for fatal errors that
occur at run-time, instead returns an error code value for the error encountered.
The user thereafter is responsible to start over when such an error condition is
observed.

Enable the macro ENABLE_CLIENT_ERROR to make Font Fusion call the OEM
implemented method before emergency shutdown is called and all the FF
internal components are deleted.

The macro CLIENT_ERROR gets defined in config.h to a method void
ClientError(void* memObject, int errorCode), when
ENABLE_CLIENT_ERROR is enabled. The parameters memObject and
errorCode refer to tsiMemHandler object and the error value set by Font
Fusion respectively.

You can also define CLIENT_ERROR to your own error handler of same signature
as ClientError or, simply define ClientError method inside your code. This
method will always be called before the emergency shutdown and can be helpful
in development process to keep a track of the critical errors.
42 Getting Started with the Font Fusion Core

Chapter 2
What to DO if Font Fusion Returns an
Error

You need to set all Font Fusion references to NULL. Do not call any Font Fusion
delete routines or similar routines.

Basically, you have to start from the beginning again—as if the Font Fusion object
no longer exists.

Font Fusion Objects You Need to
Restart if Font Fusion Returns an
Error

You do not have to restart all Font Fusion objects—just all the objects that shared
the same tsiMemObject.

You should have one tsiMemObject per font.

NOTE: See Chapter 8 for a list of error codes and descriptions.
Getting Started with the Font Fusion Core 43

Bitstream Font Fusion® 5.0a Reference Guide
Font Size options
If you application has limited space for fonts, you can use compact font formats,
such as PFRs (portable font resources) or T2K fonts, or you can use compressed
fonts.

Compact Font Formats

PFR (portable font resource) and T2K are two compact font formats offered by
Bitstream. Any font can be converted into a PFR. Contact a Sales representative
for more information.

About Our PFRs

Bitstream stores resident font sets in portable font resource (PFR) format,
because it is much faster and more compact than other formats. The PFR is a
Bézier-based, hinted format. A PFR stores only one copy of each character image
in a typeface, no matter how many character sets reference that character. A PFR
also eliminates images shared among two or more typefaces. This compact
storage method saves RAM and ROM space.

Ultra Compact PFRs

Our ultra compact format creates a PFR that is approximately 35%-40% smaller
than our standard PFR format. The advantage to using ultra compact fonts is the
smaller size, however, the disadvantage is slower performance. When rendering
characters at low resolutions, such as small point sizes on a screen display, you
might notice slowdowns. However, you will not notice much of a slowdown
when rendering characters at higher resolutions, such as on a 600 dpi printer.

Optimized OEM PFRs

The new optimized OEM PFRs from Bitstream employs a series of processes
including bucketing, pseudo-italic faces and 2-degree curves to deliver compact
size PFRs without degrading the engine performance.
44 Getting Started with the Font Fusion Core

Chapter 2
Bucketing: Fonts in PFR contain similar characters used by multiple faces.
The process of keeping a single copy of these similar characters and removing
them from other faces is termed as bucketing. Three different types of
bucketing is done on the PFRs: Universal bucketing, italic bucketing and
sans-serif bucketing.
Pseudo-italic Faces: The pseudo-italic faces are the regular or bold faces,
with a fixed oblique angle set to render the faux-italic style. To ensure the
correct rendering of these pseudo-italic fonts, appropriate lsb correction is
applied to these rendered faces. Enable the compile conditional
ENABLE_PSEUDOFONT_SUPPORT to include the pseudo-italic font support.
2-degree curves: These compact PFRs utilize 2 degree curves which are
optimized to contain lesser number of outline point, where the reduction of
points does not perturbs the quality of outlines. Enable the compile
conditional ENABLE_2DEGREE_OPTIMIZED_PFR to include the 2-degree
PFR support.
Getting Started with the Font Fusion Core 45

Bitstream Font Fusion® 5.0a Reference Guide
Compressed Font Formats

Any unencrypted font can be compressed (Type 1 PFB fonts cannot be
compressed because they are encrypted). There are two components to the
compression technology:

Creation—performed by Bitstream. Contact a Sales representative for more
information.
Reading and rendering—performed by Font Fusion through the standard
InputStream functions.

Font Fusion does not distinguish between compressed and uncompressed fonts.
The input stream automatically detects and processes compressed font files.
Enable this code with the COMPRESSED_INPUT_STREAM compile-time option.

Font compression is useful for developers who are creating applications for small
embedded systems and consumer electronics devices that must conserve ROM
and RAM space. PFR (portable font resource) and OTF/TTF (OpenType and
TrueType fonts) yield the best compression results.

Variance in compression is due to the number of characters in the font and the
complexity of the typeface design. Bitstream compresses fonts in blocks of 1-32K
bytes. Larger blocks may yield better compression, but also may require more
dynamic memory to uncompress. For example, 32K blocks would require at least
a 32K buffer.

Font Fusion also cannot do non-RAM compressed fonts. Fonts must be loaded
into RAM and uncompressed. This includes ROM-based and RAM-based (disk-
based) fonts, as these fonts also need to be uncompressed in RAM. Additionally,

Font Format Compression Ratios

Font Type Ratio

Regular PFRs (single) 35-54%

Regular PFRs (multiple) 22-38%

Compact PFRs (multiple) 9-24%

Optimized OEM PFRs 8-21%

OTFs/TTFs (single) 26-53%

FFS (Font Fusion stroke-based fonts) 8-34%
46 Getting Started with the Font Fusion Core

Chapter 2
there may be a speed degradation when using compressed fonts, which must be
uncompressed before they can be rendered.
Getting Started with the Font Fusion Core 47

Bitstream Font Fusion® 5.0a Reference Guide
48 Getting Started with the Font Fusion Core

3F o n t F u s i o n
C o r e A P I 1

tsi Functions

InputStream Functions

sfntClass Functions

PlatformID Functions

T2K Functions

Functions for Translating Font Data

Functions For Use With Stroke-Fonts

Additional Functions

Sample Code

Bitstream Font Fusion® 5.0a Reference Guide
tsi Functions: Overview
tsi_NewMemhandler()
tsi_DeleteMemhandler()

The tsiMemObject Object

tsiMemObject is an object that handles all memory allocation, de-allocation,
and re-allocation. We do it this way, instead of making direct calls to the
operating system, because tsiMemObject does a lot of error checking. This
creates a more stable product.

For instance, tsiMemObject puts special markers both before and after
allocated memory so that we can detect any attempts to write outside the
allocated memory. It also detects any memory leaks and attempts to free already-
freed memory. In this way, tsiMemObject provides a solid foundation for the
product.

Using One tsiMemObject per Font

We could have shared the tsiMemObject among all open fonts, but we get
better performance using only one tsiMemObject per font.

The current implementation of tsiMemObject also has a maximum limit on the
number of pointers it can allocate.

Creating and Destroying a Memory
Handle

The following code exemplifies creating and destroying a Memhandler object.
(This is the “outermost” object.)

/* Create the Memhandler object. */
tsiMemObject *mem = NULL;
mem= tsi_NewMemhandler(&errCode);
assert(errCode == 0);
/* Destroy the Memhandler object. */
tsi_DeleteMemhandler(mem);
50 Font Fusion Core API

Chapter 3
tsi Functions

tsiMemObject *tsi_NewMemhandler(
int *errCode,
tsi_ClientAllocMethod allocPtr,
tsi_ClientDeAllocMethod freePtr,
tsi_ClientReAllocMethod reallocPtr,
void * clientArgs)

Arguments

errCode is a pointer to the returned error code.

allocPtr is a function pointer of (tsi_ClientAllocMethod) type which is
the allocation method used by the client.

freePtr is a function pointer of (tsi_ClientDeAllocMethod) type which is
the de-allocation method used by the client.

reallocPtr is a function pointer of (tsi_ClientReAllocMethod) type
which is the re-allocation method used by the client.

clientArgs is of (void *) type which contains the arguments used by the
client.

Description

tsi_NewMemhandler() creates an object to handle all memory allocation. You
can allow a third party to create an object to handle all memory allocation/re-
allocation/de-allocation by enabling the ENABLE_CLIENT_ALLOC macro.

It returns a context pointer, which is NULL on failure.

Here is a prototype of the tsi_ClientAllocMethod method data type:

typedef void * (* tsi_ClientAllocMethod) (size_t size, void
* clientArgs)

The above method takes two parameters; size of the memory needed and the
client arguments. The function returns a pointer to the allocated memory.
Font Fusion Core API 51

Bitstream Font Fusion® 5.0a Reference Guide
Here is a prototype of the tsi_ClientDeAllocMethod method data type:

typedef void (* tsi_ClientDeAllocMethod) (void * mem, void
* clientArgs)

The above method takes two parameters; a pointer to the memory and client
arguments.

Here is a prototype of the tsi_ClientReAllocMethod method data type:

typedef void * (* tsi_ClientReAllocMethod) (void * oldMem,
size_t newSize, void * clientArgs)

The above method takes three parameters; an old memory pointer , new size of
the memory needed, and the client arguments. The function returns a pointer to
the new allocated memory.

NOTE: Please note that the allocPtr, freePtr, reallocPtr, and
clientArgs parameters are only applicable when the macro
ENABLE_CLIENT_ALLOC is ON.

void tsi_DeleteMemhandler(
tsiMemObject *t)

Arguments

t is a pointer to the tsiMemObject.

Description

tsi_DeleteMemHandler() destroys the memory object you created with
tsi_NewMemhandler().
52 Font Fusion Core API

Chapter 3
InputStream Functions:
Overview

New_InputStream3()
New_InputStream()
New_NonRamInputStream()
PF_READ_TO_RAM()
Delete_InputStream()

The InputStream Object

The InputStream object provides a level of abstraction for the core by exposing
certain methods that Font Fusion uses to access the data. This means that Font
Fusion does not need to know if the data is in memory, on a disk, on a network,
etc. It also provides more robustness. For instance, the InputStream object
checks for out-of-bounds read attempts. This error checking, together with the
abstraction InputStream provides, produces a more solid and robust design
and therefore a better product.

Creating an Input Stream

The following code exemplifies creating and destroying Memhandler and
InputStream objects.

/* Create the Memhandler and InputStream objects. */
tsiMemObject *mem;
unsigned char *data;
unsigned long length;
int *errCode;
tsiMemObject *mem = NULL;
InputStream *in = NULL;
mem= tsi_NewMemhandler(&errCode);
assert(errCode == 0);

in = New_InputStream3(mem, data, length, &errCode);
assert(errCode == 0);

/* Destroy the InputStream object. */
Delete_InputStream(in, &errCode);

/* Destroy the Memhandler object. */
Font Fusion Core API 53

Bitstream Font Fusion® 5.0a Reference Guide
tsi_DeleteMemhandler(mem);

If You Have a lot of Fonts Open and
Active at the same Time

This should not cause any problems. You should have one tsiMemObject per
font.

You can choose to keep multiple fonts open simultaneously. You can also decide
to use one or more Font Fusion scalers simultaneously. Or you could decide to
only open one font at a time.

You can also use memory-based fonts when you create the InputStream class
or you can use disk-based fonts.

These choices trade off memory use and speed. For instance, disk-based fonts do
not require any memory allocation but take longer to access.

Using Your Own Memory Allocator
and
De-allocator with Font Fusion

config.h allows you to remap allocation, re-allocation, and deletion to anything
you want. Refer to the first three definitions in config.h.
54 Font Fusion Core API

Chapter 3
InputStream Functions

InputStream *New_InputStream3(
tsiMemObject *mem,
unsigned char *data,
unsigned long length,
int *errCode)

Arguments

mem is a pointer to the tsiMemObject.

data is a pointer to your font data.

length is the length of the font data.

errCode is a pointer to the returned error code.

Description

New_InputStream3() is a pointer to an InputStream object, i.e., your font
data. Use it if reading data from memory. Your application finds the memory for
the font, and deletes the memory when it is done with the InputStream.

Recommendation: Use NewInputStream3()

You should normally use NewInputStream3(). This way, your application finds
the memory for the font, and deletes the memory when it is done with the
InputStream. Also note that if the font is in ROM, no allocation or de-
allocation is involved, so this method is the only one that you can use.
Font Fusion Core API 55

Bitstream Font Fusion® 5.0a Reference Guide
InputStream *New_InputStream(
tsiMemObject *mem,
unsigned char *data,
unsigned long length,
int *errCode)

Arguments

mem is a pointer to the tsiMemObject.

data is a pointer to your font data.

length is the length of the font data.

errCode is a pointer to the returned error code.

Description

New_InputStream() is a pointer to an InputStream object, i.e., your font
data. Use it if reading font data from memory.

NOTE: You should only use New_InputStream() if you used the class
tsiMemObject to allocate the memory for the font data. Typically, only Font
Fusion should be using the tsiMemObject class. In any case, if your application
uses New_InputStream(), then Font Fusion deletes the memory that the font
uses with a method in tsiMemObject.

InputStream *New_NonRamInputStream(
tsiMemObject *mem,
void *nonRamID,
PF_READ_TO_RAM readFunc,
unsigned long length,
int *errCode)

Arguments

mem is a pointer to the tsiMemObject.

nonRamID is a pointer to help your application identify and find the right font. In
the example in the section “void PF_READ_TO_RAM(” on page 57, it is a
pointer to a file (FILE *), but we defined it in the example as a pointer to a void
56 Font Fusion Core API

Chapter 3
(void *) so that it can point to anything. We pass this pointer to your
PF_READ_TO_RAM() function so that your application can locate the correct
font.

readFunc is a pointer to a function described below.

length is the length of the font data.

errCode is a pointer to the returned error code.

Description

New_NonRamInputStream() is a pointer to an InputStream object, i.e., your
font data. Use it if reading data from ROM, disk, or a remote server. Make sure
you define ENABLE_NON_RAM_STREAM, as in:

#ifdef ENABLE_NON_RAM_STREAM
InputStream *New_NonRamInputStream(tsiMemObject *mem, void
*nonRamID,

PF_READ_TO_RAM readFunc, unsigned long length, int
*errCode);
#endif

void PF_READ_TO_RAM(
void *id,
uint8 *dest_ram,
unsigned long offset,
long numBytes)
readFunc

Arguments

id is a pointer to an id.

dest_ram is a pointer to the memory where the function needs to write the font
data.

offset is the offset in bytes from the beginning of the font data to the data we
need to retrieve.

numBytes is the number of bytes we need to retrieve starting at the above offset.
Font Fusion Core API 57

Bitstream Font Fusion® 5.0a Reference Guide
readFunc is a pointer to a function for reading font data from ROM, disk, or a
remote server. Use it with the New_NonRamInputStream() function.

Sample Code

#ifdef ENABLE_NON_RAM_STREAM
typedef int (*PF_READ_TO_RAM) (void *id, uint8 *dest_ram,
unsigned long offset, long numBytes);
#endif

#ifdef JUST_AN_EXAMPLE_OF_PF_READ_TO_RAM
int ReadFileDataFunc(void *id, uint8 *dest_ram, unsigned
long offset, long numBytes)
{

int error;
size_t count;
FILE *fp = (FILE *)id;
assert(fp != NULL);
/* A real version of this function should only, for

example, * call fseek if there is a need */
error = fseek(fp, offset, SEEK_SET);
assert(error == 0);
count = fread(dest_ram, sizeof(char), numBytes, fp

);
assert(ferror(fp) == 0 && count == (size_t)numBytes);
return (ferror(fp) == 0 && count == (size_t)numBytes) ?

0 : -1;
}
#endif
58 Font Fusion Core API

Chapter 3
void Delete_InputStream(
InputStream *t,
int *errCode)

Arguments

t is a pointer to the InputStream object.

errCode is a pointer to the returned error code.

Description

Delete_InputStream() destroys the InputStream object you created with
New_InputStream().
Font Fusion Core API 59

Bitstream Font Fusion® 5.0a Reference Guide
sfntClass Functions: Overview
FF_New_sfntClass()
FF_Delete_sfntClass()

The sfntClass Object

The sfntClass is an internal class that represents a font. All supported font
formats share it.

ALGORITHMIC_STYLES

The compile-time option ALGORITHMIC_STYLES enables algorithmic styling.

The sixth parameter to FF_New_sfntClass(), T2K_AlgStyleDescriptor
*styling is normally set to NULL. But if you enable ALGORITHMIC_STYLES,
you can set it equal to an algorithmic style descriptor.

Here is an example using the algorithmic emboldening that Font Fusion
provides.

style.StyleFunc= tsi_SHAPET_BOLD_GLYPH;
style.StyleMetricsFunc=tsi_SHAPET_BOLD_METRICS;
style.params[0] = 5L << 14;
sfnt0 = FF_New_sfntClass(mem, fontType, 0, in, NULL, &style,
&errCode);

You can also write your own outline-based style modifications and use them
instead of the algorithmic emboldening that Font Fusion provides. Just model
them after the code for algorithmic emboldening in shapet.c.

Baseline shift for 2D emboldened characters

On applying 2-degree emboldening style to glyph shapes, the outlines are spread
along both x and y-directions. This results in uneven baselines that may produce
visually disjoint glyphs. Font Fusion overcomes this uneven baseline problem by
including the API T2K_SetBaselineShift() that takes into account this delta
shift and returns the glyph outline after baseline corrections.

Baseline shifting for 2D post-hint emboldened characters is enabled by default.
60 Font Fusion Core API

Chapter 3
T2K_SetBaselineShift(
T2K * t,
int bSet)

Arguments

t is the pointer to the t2k object itself.

bSet is the parameter to enable or disable the baseline shift option. Set the
parameter to nonzero if you want to enable the baseline correction for posthint
emboldened output.

Description

Call the T2K_SetBaselineShift() API after creating t2k object.

If the parameter bSet is set to a nonzero value in T2K_SetBaselineShift(),
the function tsi_SHAPET_BOLD_GLYPH() returns the glyph outline after
baseline correction.
Font Fusion Core API 61

Bitstream Font Fusion® 5.0a Reference Guide
sfntClass Functions

sfntClass *FF_New_sfntClass(
tsiMemObject *mem,
short fontType,
long fontNum,
InputStream *in1,
InputStream *in2,
T2K_AlgStyleDescription styling,
int *errCode)

Arguments

mem is a pointer to the tsiMemObject.

fontType denotes the type of font. You can set the fontType to the font types
displayed in the table below, as defined in truetype.h. Or you can call
FF_FontTypeFromStream() to automatically set it based on automatic
sniffing of the input stream data. This function is defined in t2k.h.

fontNum is the logical font number.

in1 is a pointer to the primary InputStream object.

in2 is a pointer to the secondary InputStream object.
This is usually == NULL.

fontType Description

FONT_TYPE_1 Use for Type 1 fonts.

FONT_TYPE_2 Use for Type 2/CFF fonts.

FONT_TYPE_TT_OR_T2K Use for TrueType or T2K fonts, such as Font Fusion.

FONT_TYPE_PFR Use for TrueDoc portable font resources (PFR)

FONT_TYPE_SPD Use for Bitstream Speedo fonts.

FONT_TYPE_OTF Use for OpenType fonts, both TrueType/OpenType
(TTF/OTF) and Adobe compressed (CFF/OTF) font
format data.
62 Font Fusion Core API

Chapter 3
styling is a pointer to a function that modifies the outlines algorithmically.
This is normally == NULL.

errCode is a pointer to the returned error code.

Description

FF_New_sfntClass() is a pointer to a new Font Fusion font (sfntClass)
object that this function creates.

void FF_Delete_sfntClass(
sfntClass *t,
int *errCode)

Arguments

t is a pointer to the sfntClass object.

errCode is a pointer to the returned error code.

Description

FF_Delete_sfntClass() destroys the Font Fusion font (sfntClass) object
you created with FF_New_sfntClass().
Font Fusion Core API 63

Bitstream Font Fusion® 5.0a Reference Guide
PlatformID Functions:
Overview

Set_PlatformID()

Set_PlatformSpecificID()

The PlatformID

The platform identifier code defines the computer platform which will use the
font. The table below shows a list of Platform IDs:

Setting the Platform and Platform-
Specific ID

Here are two optional functions to set the preferred platform and platform-
specific ID.

/* Invoke right after NewT2K(), t is of type (T2K *) */
#define Set_PlatformID(t, ID) ((t)->font->prefered-
PlatformID = (ID))
#define Set_PlatformSpecificID(t, ID) ((t)->font-
>preferedPlatformSpecificID = (ID))

Platform ID Platform Name Description

 0 Unicode Unicode version.

 1 Macintosh Script Manager code.

 2 reserved Reserved, not currently
used.

 3 Microsoft Microsoft encoding.
64 Font Fusion Core API

Chapter 3
Mapping Table to Use with TrueType and
Native T2K Fonts

Use the functions Set_PlatformID(scaler, ID) and
Set_PlatformSpecificID(scaler, ID) with TrueType and native T2K
fonts.

To use the Unicode mapping that Windows uses, include these arguments:

Set_PlatformID(scaler, 3)
Set_PlatformSpecificID(scaler, 1)

You can insert the code right after the NewT2K() constructor.

Getting the Font Name

To get the font name, call T2K_SetNameString() after you call
Set_PlatformID() and Set_PlatformSpecificID().

The T2K_SetNameString() function sets the values for the public fields
nameString8 or nameString16 in the T2K object(structure).

To use Microsoft Unicode mapping and names, include these arguments:

/* Use 3,1 to pick Microsoft Unicode character mapping */
Set_PlatformID(scaler, 3);
Set_PlatformSpecificID(scaler, 1);
/* Pick American English and the full font name */
T2K_SetNameString(scaler, 0x0409, 4);
Font Fusion Core API 65

Bitstream Font Fusion® 5.0a Reference Guide
PlatformID Functions

Set_PlatformID(
T2K *t2kScaler,
uint16 ID)

Arguments

t2kScaler is a pointer to the T2K scaler object, an instance of the font scaler.

ID is the platform ID for accessing character map tables. It is the same as what
Microsoft’s TrueType documentation specifies. See “Mapping Table to Use with
TrueType and Native T2K Fonts” on page 65 for more information.

Description

Set_PlatformID() sets the platform ID for accessing character map (cmap)
tables in TrueType and native T2K fonts. The default platform ID is the first one
in the font, usually platform ID 1, platform specific ID 0. Call this function to
change to another platform ID.
66 Font Fusion Core API

Chapter 3
Set_PlatformSpecificID(
T2K *t2kScaler,
uint16 ID)

Arguments

t2kScaler is a pointer to the T2K scaler object, an instance of the font scaler.

ID is the platform-specific ID for accessing character map tables. It is the same as
what Microsoft’s TrueType documentation specifies. See “Mapping Table to Use
with TrueType and Native T2K Fonts” on page 65 for an example.

Description

Set_PlatformSpecificID() sets the platform-specific ID for accessing cmap
tables in TrueType and native T2K fonts. The default platform ID is the first one
in the font, usually platform ID 1, platform specific ID 0. Call this function to
change to another platform-specific ID.
Font Fusion Core API 67

Bitstream Font Fusion® 5.0a Reference Guide
T2K Functions: Overview
The following functions are part of the Font Fusion T2K core:

DeleteT2K()
FF_T2K_Core_FilterReference()
NewT2K()
T2K_ConvertGlyphSplineType()
T2K_CreateUnderlineCharacter()
T2K_FindKernPairs()
T2K_FontSbitsAreEnabled()
T2K_FontSbitsExists()
T2K_GaspifyTheCmds()
T2K_GetBytesConsumed()
T2K_GetGlyphIndex()
T2K_GetIdealLineWidth()
T2K_GlyphSbitsExists()
T2K_LayoutString()
T2K_MeasureTextInX()
T2K_MultipleFilter()
T2K_MultipleFilter_Add()
T2K_MultipleFilter_Delete()
T2K_MultipleFilter_Init()
T2K_NewTransformation()
T2K_PurgeMemory()
T2K_RenderGlyph()
T2K_SetNameString()
T2K_TransformXFunits()
T2K_TransformYFunits()
68 Font Fusion Core API

Chapter 3
The T2K Scaler Object

The T2K scaler object represents an instance of the font scaler. The main task of
the font scaler is to produce good looking bitmap images for characters at
different sizes and transformations, such as rotated characters. To use it, you first
need to set the transformation with T2K_NewTransformation(). Basically,
you specify:

the x and y resolutions
a 2*2 transformation matrix (includes the point size)
a true or false setting to enable or disable embedded bitmaps

Then you call T2K_RenderGlyph() to actually get outline or bitmap data. After
you are done with the output data, you need to call T2K_PurgeMemory() to
free up memory.

Modifying the Transformation Matrix

You can modify the transformation matrix to make algorithmic italics (obliquing)
or rotate characters.

Making Algorithmic Italics (Obliquing Text)

Before calling T2K_NewTransformation(), set the transformation matrix this
way:

trans.t00 = ONE16Dot16 * size;
trans.t01 = ONE16Dot16 * sin(italic_angle) * size;
trans.t10 = 0;
trans.t11 = ONE16Dot16 * size;

size is a number, such as 16.

italic_angle is a number, such as 12.0 degrees. In this case,
ONE16Dot16 * sin(12.0) is 13626.
Font Fusion Core API 69

Bitstream Font Fusion® 5.0a Reference Guide
Examples of Transformations

Typically, you have the following:

trans.t00 = size;
trans.t01 = 0;
trans.t10 = 0;
trans.t11 = size;

size is a fractional number in 16.16 format.

To condense the text in the x-direction to 80 percent, use the following. We do
not promote condensing text, since there are condensed fonts designed that way,
but the following example shows you how to do it.

trans.t00 = util_FixMul(size, 8*0x10000/10);
trans.t01 = 0;
trans.t10 = 0;
trans.t11 = size;

size is a fractional value in 16.16 format.

To stretch the text in the y-direction to 125 percent, use the following. We do not
promote extending text, but the following example shows you how to do it.

trans.t00 = size;
trans.t01 = 0;
trans.t10 = 0;
trans.t11 = util_FixMul(size, 125*0x10000/100);

size is a fractional value in 16.16 format.

Rotating Text

To rotate the text at an angle, alpha-measured clockwise from the x-axis, use the
following. If the angle is in the first quadrant, it is negative.

trans.t00 = util_FixMul(size , cosvalue);
trans.t01 = util_FixMul(size , sinvalue);
trans.t10 = util_FixMul(size , -sinvalue);
trans.t11 = util_FixMul(size , cosvalue);

size is a fractional value in 16.16 format. The cosvalue and sinvalue above
are cos(angle) and sin(angle) in 16.16 format.
70 Font Fusion Core API

Chapter 3
T2K_RenderGlyph():
Getting Bitmap and Outline Output

This section discusses the following topics related to monochrome and grayscale
output, as well as output for a TV.

Grayscale
The difference between T2K_GRID_FIT and T2K_NAT_GRID_FIT
T2K_TV_MODE

The Difference Between T2K_TV_MODE_2 and T2K_TV_MODE
Driving color LCD displays

Grayscale

For best quality, use grayscale whenever possible.

Getting Grayscale or Monochrome Output

To get grayscale or monochrome output, set the fifth argument,
greyScaleLevel, in T2K_RenderGlyph().

For monochrome output, set greyScaleLevel to
BLACK_AND_WHITE_BITMAP.

Scalar -> baseAddr 8 pixels per byte.

For grayscale output, set greyScaleLevel to
GREY_SCALE_BITMAP_HIGH_QUALITY.

Scalar -> baseAddr 1 pixel per byte.

NOTE: Do Not Edit T2K_BLACK_VALUE and T2K_WHITE_VALUE to Get a
Different Range of Grayscale Values

You should not edit anything in t2k.h. The values are there so that you can put
an “assert” statement in your code to automatically detect whether or not
Bitstream changes the values in the future.

The Difference Between T2K_GRID_FIT and T2K_NAT_GRID_FIT

T2K_GRID_FIT allows you to apply run-time auto-hinting/gridding to your
character images. Note that this slows down Font Fusion. T2K_NAT_GRID_FIT
is much faster.
Font Fusion Core API 71

Bitstream Font Fusion® 5.0a Reference Guide
T2K_TV_MODE

T2K_TV_MODE improves character rendering when you do not use
T2K_GRID_FIT (run-time auto-hinting/gridding) or T2K_NAT_GRID_FIT, but
you do use integer metrics and grayscale (e.g., for a TV screen).

T2K_TV_MODE adjusts the white space around the character and also ensures
that you get left-to-right grayscale symmetry for simple characters.

If you use T2K_TV_MODE, turn off T2K_GRID_FIT and T2K_NAT_GRID_FIT.

You should use T2K_TV_MODE when the following conditions are true:

You do not want to use T2K_GRID_FIT (run-time auto-hinting/gridding) or
T2K_NAT_GRID_FIT.
You are using grayscale.
You are using integer metrics (only one version of each character per size),
not fractional positioning with fractional metrics.

However, note that for Latin fonts, T2K_TV_MODE_2 normally looks better than
T2K_TV_MODE.

Improving Output on an Interlaced TV Device

To improve output on an interlaced TV, first turn off grid-fitting. This gives you
an image with smoother transitions. This also speeds up Font Fusion.

Next, turn on T2K_TV_MODE if you use integer metrics. Also, do not use
fractional pixel positioning to improve the quality, because this will affect the
left-to-right symmetry of characters.

Then experiment with a simple filter to make the image more blurry. A simple
3*3 convolution is probably sufficient. You should probably average more in the
y-direction than in the x-direction so as to avoid the interlacing flicker. But your
hardware may have this capability already built into it.

The Difference Between T2K_TV_MODE_2 and T2K_TV_MODE

The _2 modifier in T2K_TV_MODE_2 activates a lightweight “y”hint strategy that
improves the quality of the output. For instance, it makes symmetrical the anti-
aliased bitmap pattern on the top and bottom of a lowercase “o”.

We recommend using T2K_TV_MODE_2 to get the best-quality output on TV
devices and one of the extended LCD modes to get the best-quality output on
72 Font Fusion Core API

Chapter 3
LCD devices, such as LCD TVs. For example, compare the figures below, which
show no anti-aliasing and T2K_TV_MODE_2. For optimal quality, the regular TV
modes already make characters left-to-right symmetrical.

No anti-aliasing.

T2K_TV_MODE_2, anti-aliasing is on.
Font Fusion Core API 73

Bitstream Font Fusion® 5.0a Reference Guide
LCD Modes

Font Fusion features two types of LCD modes, standard and extended. The
standard and extended LCD modes work independently from one another, so you
can run both at the same time if your application requires it. We recommend
using extended LCD modes to get the best-quality output on LCD devices,
especially color LCD devices (color LCDs must have the RGB color orientation).

In the LCD mode, an indexed bitmap is returned. Font Fusion uses the index to
find the right color in the lookup table provided. You can recompute the color
lookup table for any foreground and background color. Typically there is a black
foreground color and a white background color.

Standard LCD Modes

For optimal quality, standard LCD modes make characters left-to-right
symmetrical. The standard LCD modes are described below.

T2K_LCD_MODE, which is the basic LCD mode.
T2K_LCD_MODE_2, which activates a lightweight “y” hint strategy that
improves the quality of the output. For instance, it makes the anti-aliased
bitmap pattern symmetrical on the top and bottom of a lowercase “o”.
T2K_LCD_MODE_3, which relies on hints automatically generated at run-
time.
T2K_LCD_MODE_4, which uses native hints. Native hinting makes this mode
faster than mode 3.

Extended LCD Modes

There are four extended LCD modes for the different orientations of LCD
screens:

Horizontal RGB (T2K_EXT_LCD_H_RGB)
Horizontal BGR (T2K_EXT_LCD_H_BGR)
Vertical RGB (T2K_EXT_LCD_V_RGB)
Vertical BGR (T2K_EXT_LCD_V_BGR)
74 Font Fusion Core API

Chapter 3
To use an LCD Mode

1 For standard LCD mode, turn on the ENABLE_LCD_OPTION macro in
config.h. For extended LCD modes, also turn on the
ENABLE_EXTENDED_LCD_OPTION macro in config.h.

2 Specify the desired “cmd” argument for either standard or extended LCD
mode.

3 Be sure that the ENABLE_NATIVE_TT_HINTS macro is on (it is on by
default).

4 Turn on the ENABLE_NATIVE_T1_HINTS macro if you are using Type 1
fonts.

Driving Color LCD Displays

1 Use FF_NewColorTable to get the RGB colors for LCD display. These
colors will be indexed by any bitmap produced by T2K. If your platform is
using a Color Lookup Table, you will need to set these colors in that table.
This is how you extract the actual RGB colors from the T2K color table:

ff_ColorTableType *pColorTable;

For black text on white Set Rb = Gb = Bb = 0xff, and Rf = Gf = Bf = 0.

pColorTable = FF_NewColorTable(mem, Rb, Gb, Bb, Rf, Gf, Bf);

The call above returns the color for all the indices in the bitmap.
pColorTable->N will contain the specified number of elements in the
array, and pColorTable->ARGB[0] contains the first ARGB value.

ARGB = pColorTable->ARGB[byte index from the bitmap];
B = (ARGB & 0xff); ARGB >>= 8;
G = (ARGB & 0xff); ARGB >>= 8;
R = (ARGB & 0xff);

When this is complete, free up the color-table, but do not call this per-
character for speed reasons.

FF_DeleteColorTable(mem, pColorTable);

2 Do not invoke either FF_SetBitRange255() or FF_SetRemapTable().
If you need to shift the range, we recommend using a filter function.

3 Invoke T2K_NewTransformation() to set the transformation matrix.

NOTE:For standard LCD modes, set the xRes to three times the yRes, since
LCD screens contain three times as many colored pixels in the x direction as
Font Fusion Core API 75

Bitstream Font Fusion® 5.0a Reference Guide
in the y direction. Setting these resolutions in this way tells T2K we have a
non-square aspect ratio where the x resolution is three times higher than the
y resolution. You do not need to do this for the extended modes as these
modes handle the conversion internally.

4 In the cmd parameter, turn on the bit flag to the LCD mode option you want
to use, for example, T2K_EXT_LCD_H_RGB to use the most common
extended LCD mode.

5 In the greyScalelevel parameter to the T2K_RenderGlyph() function, set
GREY_SCALE_BITMAP_HIGH_QUALITY in the greyScalelevel
parameter .

You now have an indexed color bitmap. When you draw the bitmap you need to
take into account that the bitmap contains indices for the colored pixels.
76 Font Fusion Core API

Chapter 3
T2K_RenderGlyph(): Hinting

This section discusses the following topics related to hinting.

When to turn hinting on and off
Turning run-time hinting on and off
Supporting native TrueType hinting in Font Fusion

When to Turn Hinting on or off

For monochrome output, we recommend that you turn hinting on.

For a high-quality display device, such as a computer monitor, we also
recommend that you turn hinting on.

For a low-quality display device, such as a TV monitor, you should turn hinting
off.

Turn Run-Time Hinting on or off

You control hinting through the sixth argument, T2K_GRID_FIT, of
T2K_RenderGlyph().

You enable it by turning on the T2K_GRID_FIT bit.

You disable it by turning off the T2K_GRID_FIT bit.

Supporting Native TrueType Hinting in Font Fusion

You need these additional.c and.h files:

fnt.c
fnt.h
t2ktt.c
t2ktt.h

You also need to #define ENABLE_NATIVE_TT_HINTS in config.h.

In addition, you need to turn on T2K_NAT_GRID_FIT (native grid-fitting) in the
cmd argument to T2K_RenderGlyph().
Font Fusion Core API 77

Bitstream Font Fusion® 5.0a Reference Guide
T2K_RenderGlyph(): Rendering
Characters and Strings

This section discusses the following topics related to rendering characters and
character strings.

Accessing bitmap data after calling T2KRenderGlyph()
Outline winding direction
Leaving USE_NON_ZERO_WINDING_RULE on
When making any white-space character, T2K_RenderGlyph() returns
NULL for baseAddr
Getting outline spline data
Handling third- degree Bézier curves when
 t2k->glyph->curveType == 2
Making a colored, bordered character

Accessing Bitmap Data After Calling T2K_RenderGlyph()

You access bitmap data through public fields in the T2K class. To begin, define
the following fields:

/* Begin bitmap data */
long width, height;
F26Dot6 fTop26Dot6, fLeft26Dot6;
long rowBytes;
unsigned char *baseAddr;
/* unsigned char baseAddr[N], N=t->rowBytes * t->height */
uint32 *baseARGB;
/* End bitmap data */

baseAddr is either a bit array or a byte array. baseARGB is a 32-bit array
(ARGB). Note that the color filter border uses baseARGB, but baseARGB is also
envisioned for future use for outputting color fonts.

Outline Winding Direction

The outline winding direction matters because the run-time-hinting process uses
this information to determine where the black and white areas are.

For TrueType and native T2K fonts, the black (inside) area should be on the right
if you follow a contour in the direction of increasing point numbers.
78 Font Fusion Core API

Chapter 3
For Type 1 fonts, the black (inside) area should be on the left if you follow a
contour in the direction of increasing point numbers.

TrueType and native T2K outlines need to use the correct winding direction. Type
1 outlines should also use the correct winding direction, which is the opposite of
TrueType and native T2K outlines.

Leaving USE_NON_ZERO_WINDING_RULE on

The USE_NON_ZERO_WINDING_RULE option determines what kind of fill rule
the Font Fusion scan converter uses. We recommend that you leave this setting
on.

This enables a non-zero winding rule. Otherwise, the scan converter uses an
even-odd filling rule. For example, the even-odd filling rule turns an area where
two strokes overlap—which is rare—into white, but the non-zero winding rule
keeps such areas black.

For an embedded system where the fonts are well built and you do not have
overlapping strokes, you get a small increase in speed—probably less than 1%—
by disabling this.

When Making any White-Space Character, T2K_RenderGlyph()
Returns NULL for baseAddr

You do not have to check for the existence of white-space characters—i.e., any
glyph without pixels—and advance the x position accordingly, because there is
no bitmap to draw! Just check for baseAddr == NULL instead.

You also need to check for the following:

baseARGB == NULL && baseAddr == NULL

Getting Outline Spline Data

To get outline spline data, turn on the T2K_RETURN_OUTLINES option for the
cmd argument of T2K_RenderGlyph(). This sets the public field glyph in Font
Fusion.

/*** Begin outline data */
GlyphClass *glyph;
/*** End outline data */

GlyphClass includes public fields with the outline data.
Font Fusion Core API 79

Bitstream Font Fusion® 5.0a Reference Guide
Here are the relevant fields in GlyphClass:

 /* For curveType, use 2 for TrueType (second-degree B-spline)
outlines, and use 3 for Type 1 (third-degree Bézier) */
short curveType;
/* Number of contours in the character */
short contourCount;
/* Number of points in the characters, plus zero for sidebearing
points */
short pointCount;
/* sp[contourCount] start points */
int16 *sp;
 /* ep[contourCount] end points */
int16 *ep;
 /* oox[pointCount] unscaled unhinted points. Add two extra points
for lsb, and rsb */
int16 *oox;
/* ooy[pointCount] unscaled unhinted points. Set y to zero for the
two extra points */
/* Do NOT include the two extra points in sp[], ep[], contourCount,
and do NOT include the two extra points in pointCount */
int16 *ooy;
/* onCurve[pointCount] indicates if a point is on or off the curve.
It should be true or false */
uint8 *onCurve;
/* The actual points in device coordinates */
F26Dot6 *x, *y;

The character is made out of contourCount contours.

The outline coordinates are stored in F26Dot6 format in the x and y arrays (six
fractional bits).

Each contour starts with the point number sp[contour], and ends with point
number ep[contour].

sp[0] should typically be zero. The letter A typically has 2 contours, B has 3, C
has 1, etc. The contours are self closing.

Each point is either an “on” or “off” curve point. A third-degree Bézier is on, off,
off, on. A second-degree parabola is on, off, on. So a particular point n is
described by x[n], y[n], onCurve[n].

Note that a second-degree b-spline curve allows many consecutive “off” curve
points.
80 Font Fusion Core API

Chapter 3
Handling Third-Degree Beziér Curves when
t2k->glyph->curveType == 2

First, make sure you have turned on the T2K_RETURN_OUTLINES bit flag to
T2K_Render_Glyph() and that you are using the t2k->glyph structure.

We also encourage you to see if your current code can handle the second-degree
curves directly, since you can render them more quickly than third-degree curves.

If not, this is how you go between them:

You need to find all straight lines and parabolas. The function
Make2ndDegreeEdgeList() from t2ksc.c shows you how to do that.

Now each parabola, which is equal to a second-degree Beziér curve, is described
by the points A,B,C. Each third-degree Beziér curve is described by points
P1,P2,P3,P4. Map points [A,B,C] to [P1,P2,P3,P4] as follows:

P1 = A;
P2 = (2B + A)/3;
P3 = (2B + C)/3;
P4 = C;

Making a Colored, Bordered Character

Invoke the filter function T2K_CreateBorderedCharacter(), enabled in the
t2kextra.c file. See “How to write a filter function” on page 90 for more
information. After this you can find the 32-bit colored, bordered character in
t2kscaler->baseARGB. The format is ARGB, 8 bits each.
Font Fusion Core API 81

Bitstream Font Fusion® 5.0a Reference Guide
T2K_RenderGlyph(): Sample Code for
Rendering Characters and Strings

This section discusses the following topics related to rendering characters and
character strings.

Drawing a character
Drawing a character string using MyDrawCharExample()
Sample code for evaluating outline data

Drawing a Character

Here is an example. Note that this example is for drawing characters on the
Macintosh and has not been optimized at all for performance.

/* Simple example that shows how to get bitmap data from the T2K
scaler object. The example assumes you are using a screen-
coordinate system where the upper left position is 0,0. */

static void MyDrawCharExample(T2K *scaler, int x, int y)
{

uint16 left, right, top, bottom;
unsigned short R, G, B, alpha;
uint32 *baseARGB = NULL;
int xi, yi, xd;
char *p;

p = (char *)scaler->baseAddr;
#ifdef ENABLE_T2KE

baseARGB = scaler->baseARGB;
#endif

left = 0 + x;
top = 0 + y;
right= scaler->width + x;
bottom= scaler->height + y;

if (baseARGB == NULL && p == NULL) return; /*****/
assert(T2K_BLACK_VALUE == 126);

MoveTo(x, y);

for (yi = top; yi < bottom; yi++) {
for (xi = left; xi < right; xi++) {

xd = xi - left;
#ifdef USE_COLOR
82 Font Fusion Core API

Chapter 3
if (baseARGB != NULL) {
/* Extract alpha */
alpha = baseARGB[xd] >> 24;
/* Extract Red */
R = (baseARGB[xd] >> 16) & 0xff;
/* Extract Green */
G = (baseARGB[xd] >> 8) & 0xff;
/* Extract Blue */
B = (baseARGB[xd] >> 0) & 0xff;

} else {
alpha = p[xd];
/* Map [0-126] to [0,255] */
alpha = alpha + alpha + (alpha>>5);

/* Set to Black */
R = G = B = 0;

}

if (alpha) {
/* RGBColor contains 16 bit color info for R,G,B each */
RGBColor colorA, colorB;

/* Get the background color */
GetCPixel(xi, yi, &colorB);
/* Map to 0-256 */
alpha++;
/* newAlpha = old_alpha + (1.0-old_alpha) * alpha */
/* Blend foreground and background colors */
R = (((long)(256-alpha) * (colorB.red>> 8) + alpha * R)>>8);
G = (((long)(256-alpha) * (colorB.green>> 8) + alpha * G)>>8);
B = (((long)(256-alpha) * (colorB.blue>> 8) + alpha * B)>>8);

assert(R >= 0 && R <= 255);

/* Map 8 bit data to 16 bit data */
colorA.red= R << 8;
colorA.green= G << 8;
colorA.blue= B << 8;
/* Set the foreground color/paint to colorA */
RGBForeColor(&colorA);
/* Paint pixel xi, yi with colorA */
MoveTo(xi, yi);
LineTo(xi, yi);

}
#else

/* Paint pixel xi, yi */
if (p[xd>>3] & (0x80 >> (xd&7))) {

MoveTo(xi, yi);
LineTo(xi, yi);
Font Fusion Core API 83

Bitstream Font Fusion® 5.0a Reference Guide
}
#endif
}

/* Advance to the next row */
p += scaler->rowBytes;
if (baseARGB != NULL) {

baseARGB += scaler->rowBytes;
}

 }
}

Drawing a String Using MyDrawCharExample()

Here is an example, using the MyDrawCharExample(), discussed previously.

F16Dot16 x, y;

x = y = 12 << 16;
while (characters to draw..)

/* Render the character */
T2K_RenderGlyph(scaler, charCode, 0, 0,

GREY_SCALE_BITMAP_HIGH_QUALITY, T2K_SCAN_CONVERT, &errCode);
assert(errCode == 0);
/* Now draw the character */
MyDrawCharExample(scaler, ((x + 0x8000)>> 16) +

(scaler->fLeft26Dot6 >> 6), ((y + 0x8000)>> 16) -
(scaler->fTop26Dot6 >>6));

x += scaler->xAdvanceWidth16Dot16;/* advance the pen forward */
/* Free up memory */
T2K_PurgeMemory(scaler, 1, &errCode);
assert(errCode == 0);

}

Sample Code for Evaluating Outline Data

To see how Font Fusion breaks down the outlines into straight lines and
parabolas (or third-degree Beziér curves), look at the following in t2ksc.c:

Make2ndDegreeEdgeList() for parabolas
Make3rdDegreeEdgeList() for third-degree Beziér curves

Once you have a parabola (described by three points: A,B, and C), you describe it
in parametric form as follows:

(1-t)*(1-t)*A + 2 *t *(1-t)*B + t*t*C
84 Font Fusion Core API

Chapter 3
Once you have a third-degree Beziér curve (described by four points: A,B,C,D),
you describe it in parametric form as follows:

(1-t)*(1-t)*(1-t)*A + 3*(1-t)*(1-t)*t*B + 3*(1-t)*t*t * C + t*t*t *
D

In both cases, t starts as being equal to zero at point A, and then it goes to one
by the last point.
Font Fusion Core API 85

Bitstream Font Fusion® 5.0a Reference Guide
Metrics

This section discusses the following topics related to font or glyph metrics.

Font-wide metrics
Glyph-specific metrics
Measuring the widths and other metrics of strings

Font-Wide Metrics

The font-wide metrics are the combined metrics for all the characters in a font.
These are useful for such activities as pagination, setting line spacing, pre-
allocating memory, or setting the minimum number of characters on a line.

Here is an example of the letters “b” and “g” superimposed, showing font-wide
metrics.

Here is the font-wide horizontal metrics data:

int horizontalFontMetricsAreValid;
F16Dot16 xAscender,yAscender;
F16Dot16 xDescender,yDescender;
F16Dot16 xLineGap,yLineGap;
F16Dot16 xMaxLinearAdvanceWidth, yMaxLinearAdvanceWidth;
F16Dot16 caretDx, caretDy; /* [0,K] for vertical */
F16Dot16 xUnderlinePosition, yUnderlinePosition;
/* 0 if unknown */
F16Dot16 xUnderlineThickness, yUnderlineThickness;
/* 0 if unknown */

Here is the font-wide vertical metrics data:

int verticalFontMetricsAreValid;
F16Dot16 vert_xAscender,vert_yAscender;
F16Dot16 vert_xDescender,vert_yDescender;
F16Dot16 vert_xLineGap,vert_yLineGap;

gb x

LineGap

xMaxLinearAdvanceWidth

Ascender

Descender
86 Font Fusion Core API

Chapter 3
F16Dot16 vert_xMaxLinearAdvanceWidth,
vert_yMaxLinearAdvanceWidth;

F16Dot16 vert_caretDx,vert_caretDy;
/* [0,K] for vertical */

The Ascender is the distance above the baseline, and the Descender is the
distance below the baseline. Both have x and y components. For left-to-right
horizontal text, the x component is zero. It is non-zero for rotated text.

Glyph-Specific Metrics

Below is a lowercase letter “g” showing horizontal/vertical glyph-specific metrics
respectively.

Horizontal metrics for the lowercase character ‘g’.

Vertical metrics for the lowercase character ‘g’.

height is a 32-bit integer specifying the number of scan lines.
width is a 32-bit integer specifying the number of pixels.

Here is the glyph specific horizontal metrics data for positioning the top left
corner of the bitmap:

int horizontalMetricsAreValid;
F16Dot16 xAdvanceWidth16Dot16, yAdvanceWidth16Dot16;
F16Dot16 xLinearAdvanceWidth16Dot16,

yLinearAdvanceWidth16Dot16;

gx x

pen position next pen position

fTop26Dot6
Base line

fLeft26Dot6

width

height

x

x

pen position

next pen position
Base line

width

height g
Font Fusion Core API 87

Bitstream Font Fusion® 5.0a Reference Guide
F26Dot6 fTop26Dot6, fLeft26Dot6;

Use LinearAdvanceWidth values for non-orthogonal rotations (e.g., 45
degrees).

Here is the glyph specific vertical metrics data for positioning the top left corner
of the bitmap:

int verticalMetricsAreValid;
F16Dot16 vert_xAdvanceWidth16Dot16, vert_yAdvanceWidth16Dot16;
F16Dot16 vert_xLinearAdvanceWidth16Dot16,

vert_yLinearAdvanceWidth16Dot16;
F26Dot6 vert_fTop26Dot6, vert_fLeft26Dot6;

So for horizontal text, put the top left corner of the bitmap at the following:

[((x + 0x8000)>> 16) + (scaler->fLeft26Dot6 >> 6),
((y + 0x8000)>> 16) - (scaler->fTop26Dot6 >>6)]

Then advance the pen as follows:

 x += scaler->xAdvanceWidth16Dot16;
 y += scaler->yAdvanceWidth16Dot16;

And for vertical text, put the top left corner of the bitmap at the following:

[((x + 0x8000)>> 16) + (scaler->vert_fLeft26Dot6 >> 6),
((y + 0x8000)>> 16) - (scaler->vert_fTop26Dot6 >>6)]

Then advance the pen:

 x += scaler->vert_xAdvanceWidth16Dot16;
 y += scaler->vert_yAdvanceWidth16Dot16;

Measuring the Widths and Other Metrics of Strings (such as X11’s
XTextWidth, and XTextExtent)

In t2k.h, the closest method to XTextWidth() is T2K_MeasureTextInX().
It measures the linear, unhinted width. It cannot measure the hinted width
without actually rendering the characters.

Font Fusion also has two sample functions called T2K_GetIdealLineWidth()
and T2K_LayoutString(). They can help you lay out an entire line so that the
total width is the ideal linear width, while still using run-time, hinted, individual
characters and metrics.
88 Font Fusion Core API

Chapter 3
Using Filters

Your application has the unique capability of supplying a filter function “plug-in”
to perform post-processing on images that the Font Fusion Core produces. These
fundamental images can experience post-processing in a filter function in the
form of Gaussian fuzz-filtering, smearing, colorizing, texture mapping,
underline, strikethrough, or a multiple of these processes. This section discusses
using one filter function at a time. See “Using Multiple Filters” on page 99 for
details on how to use multiple filters together. The following topics are
discussed:

Sample filter functions
Using the filter function
How to write a filter function
Basic rules for writing a filter function plug-in
Removing or changing filters

Your application can define or create functions doing just about anything to the
source bitmap image, and have that new image appear to emerge from the
RenderGlyph() function of the Core.

This is extremely useful and convenient under normal circumstances, but it is
vital to performance when you use a bitmap cache, such as the Font Fusion
Cache Manager. The filtered images can then be at the ready in the Cache
Manager, avoiding the costly filtering process when Font Fusion renders the
character another time. This is a huge performance benefit to your application.

Sample Filter Functions

The following sample filter functions can be enabled by uncommenting the
appropriate defines from the top of the t2kextra.h file.

T2K_TV_Effects()

This filter implements the edge effects required by the FCC. See “Support for
FCC Standards for Closed Captioning Compliance” on page 94 for more
information about this filter.
Uncomment the line below in t2kextra.h to implement this filter:
/* #define ENABLE_T2K_TV_EFFECTS */

T2K_CreateBorderedCharacter()

This filter creates a border around a character. See “How to write a filter
function” on page 90 for a description of how to create this filter.
Uncomment the line below in t2kextra.h to implement this filter:
Font Fusion Core API 89

Bitstream Font Fusion® 5.0a Reference Guide
/* #define ENABLE_COLORBORDERS */

T2K_FlickerFilterExample()

This filter implements a flicker filter for TV screens. See “Flicker Filter
Example” on page 96 for a description of this filter function.
Uncomment the line below in t2kextra.h to implement this filter:
/* #define ENABLE_FLICKER_FILTER */

Using Filter Functions

If you are using the Font Fusion Core without the Cache Manager, you
plug in the filter function through the setter macro,
FF_Set_T2K_Core_FilterReference(), defined in t2k.h. See
page 102 for details.
If you are using the Font Fusion Cache Manager, you plug in the filter
function through the Cache Manager interface, FF_CM_SetFilter(). See
page 179 for more information about this function.
The Cache Manager simply “wires up” the filter specification to the Core
before asking the Core to render a glyph. But it also keeps track of the
FilterTag your application defines. It stores this filter tag with the
resulting image in the cache, so that you can use and store up to 256
different filters in the cache at one time.

How to write a filter function

You can write a filter function to do just about anything you can think of. The
filter function itself can link together a series of subfilters. You can also use the
filter function to convert the Core images into whatever bitmap format your
graphics device requires, which will boost your system performance once the
images are in the cache. There are several basic rules for writing a filter function
plug in:

Allocate destination memory from the right place.
Find the source image in the T2K class.
Leave the destination image in the right place in the T2K class.
Update glyph metrics that the filter affects.
Dispose of the source image memory properly.
Ensure that the T2K class is informed about properly disposing of the
destination memory.

All these rules are followed closely in a sample filter function in t2kextra.c
called T2K_CreateBorderedCharacter(). Please refer to this example to
90 Font Fusion Core API

Chapter 3
better understand the filter function specification. We will describe the basic
rules in greater detail, making direct references to this working example.

Here is a prototype of the FF_T2K_FilterFuncPtr data type:

typedef void *(*FF_T2K_FilterFuncPtr)(void *t2k, void
*filterParamsPtr);

As you can see, it has a simple interface, taking only two parameters. These are a
pointer to a T2K class and a pointer to a parameter block. The parameter block is
usually a data structure you design for that particular filter.

The T2K_CreateBorderedCharacter() function does make use of the
second argument, a pointer to a filter function parameter block. This block is
defined and agreed upon by your application and the filter function. It can be
anything you need it to be, or nothing at all.

T2K_CreateBorderedCharacter() points a T2K_BorderfilterParams
pointer at the void pointer, and reads parameters for how thick the border is,
what color it is, and what color the core of the character is. Then it goes about
creating a 32-bit depth, multi-colored image from the original image. It does this
by first creating a smeared, fuzzy-border, colored background of the image. Then
with less smearing, it paints the same image a little smaller on top in the
requested core color. While doing this, it follows the basic rules.

Basic rules for writing a filter function plug-in:

1 Allocate destination memory from the right place.

If the Cache is active, the filter function asks the Cache Manager for the
destination memory. Otherwise, it calls tsi_AllocMem for the amount it needs.
It pays attention to setting the internal_baseARGB flag properly, so that the
Core knows how to purge memory after it renders the character.

The source memory is pointed to in the baseAddr field, and the input data is at
8-bit depth. The filter function deepens the color depth and acquires destination
memory at 32 bits-per-pixel and sets all T2K class fields properly.
Font Fusion Core API 91

Bitstream Font Fusion® 5.0a Reference Guide
On input, the filter function finds this state:

The filter function example allocates the destination memory it needs. If it is
successful getting cache memory, it sets the flag for the baseARGB memory,
internal_baseARGB, to FALSE. If it cannot get cache memory, it sets
internal_baseARGB to TRUE.

2 Find the source image in the T2K class.

The T2K_CreateBorderedCharacter() function finds the source memory in
the baseAddr field, and its dimensions that are described in t->height and
t->width fields. The number of bytes per row is in t->rowBytes.

So the filter function can easily walk through the source image and “paint” the
new, colored image based on the source information. As stated before, this filter
takes two walks through the image, one fuzzier than the other, and each time it
“paints” a different color on the destination.

3 Leave the destination image in the right place in the T2K class.

The T2K_CreateBorderedCharacter() function is leaving the destination
image behind, so to speak, in the T2K class, and cleaning up the source image
memory. This sample leaves the image in the 32-bit pointer field baseARGB.

T2K Class State

internal_baseAddr true

baseAddr set and valid, allocated by
the Core and not by the
Cache Manager

internal_baseARGB false

baseARGB NULL
92 Font Fusion Core API

Chapter 3
4 Update glyph metrics that the filter affects.

The other key thing this function does, since it expands the image metrics
somewhat in the smearing, is that it properly describes the expansion of the
image bounding box by also changing the following values:

t->rowBytes
t->width
t->height
t->xAdvanceWidth16Dot16
t->xLinearAdvanceWidth16Dot16
t->fTop26Dot6
t->vert_fTop26Dot6

They are all affected by the delta x and delta y parameters in its private
parameter block: the things that control the amount of smear and hence the
thickness of the actual “border” around the character. Your filter may or may not
affect all of these particular glyph metrics.

5 Dispose of the source image memory properly.

This function found the source memory at the baseAddr field. If the flag
internal_baseAddr is TRUE, that means the Core acquired the memory by
calling tsi_FastAllocMem (), so it calls tsi_FastDeAllocN(). If
internal_baseAddr is FALSE, that means the Core got the memory from the
Cache. This should never happen. Cache memory should always be left alone!
Never try to de-allocate cache memory, because you will crash your system!

6 Ensure that the T2K class is informed about properly disposing of the
destination memory.

The following table shows the state of the affected T2K class members after this
filter function completes:

T2K Class State

internal_baseAddr false

baseAddr NULL, and disposed of by this filter function

internal_baseARGB true if from tsi_AllocMem(),
false if from cache memory

baseARGB set and valid
Font Fusion Core API 93

Bitstream Font Fusion® 5.0a Reference Guide
When your application calls T2K_PurgeMemory(), the Core can intelligently
handle the cleanup.

Removing or Changing Filters

The system only maintains the last filter set, therefore, if you want to turn the
filter off, set the filter function pointer to NULL. If you are using the cache
manager, you can do this with the following call:

FF_CM_SetFilter(theCache, 0, NULL, NULL);

If you are not using the Cache Manager, set the filter function pointer to null
with the following call:

FF_Set_T2K_Core_FilterReference(t2k, NULL, NULL);

Both of these examples also set the parameter’s pointer to NULL for the sake of
neatness. As stated above, Font Fusion only maintains the last filter set, so you
can switch to another filter by simply setting a new function pointer or
parameter’s-block pointer combination.

Support for FCC Standards for Closed Captioning Compliance

Font Fusion supports font requirements mandated by the Federal
Communications Commission (FCC) set forth by the Electronics Industries
Alliance (EIA) for closed captioning display on both analog and digital television
systems.

Font Fusion includes the ability to display text using the following six character
edge effects:

embossed (to support the specified "raised" effect)
engraved ("depressed")
outline ("uniform")
drop shadow left
drop shadow right
or none

Edge effects can be implemented by using the ENABLE_T2K_TV_EFFECTS plug-
in filter, defined in the t2kextra.h file, and the T2K_TV_Effects() function. It
is recommended that you use T2K_RenderGlyph() with grayscale and in
T2K_TV_MODE_2 for best results, or you can use native hints combined with
grayscale. The T2K_TV_Effects() filter function is described in detail below.
94 Font Fusion Core API

Chapter 3
void T2K_TV_Effects(
T2K *t,
void *params)

Arguments

t is a pointer to the T2K scaler object
params is a void pointer that points to T2K_TVFilterParams and
myParams->selector selects the FCC styles:

0 — none

1 — raised

2 — depressed

3 — uniform(outline)

4 — drop-shadow-left

5 — drop-shadow-right

Description

This is a plug in filter which implements the 6 FCC character edge effects. It is
recommended that you use T2K_RenderGlyph() with GrayScale and in
T2K_TV_MODE_2 for best results. Alternatively you could also try native hints
combined with GrayScale.

NOTE: If you are using the cache manager, you can use all plug-in filters by using
FF_CM_SetFilter(). See “void FF_CM_SetFilter(” on page 179 for assistance.

T2K_TVFilterParams Structure

typedef struct {
uint8 greyScaleLevel;

/* greyScaleLevel used */
uint8 selector;

/* FCC style : 0 none, 1 raised, 2 depressed,
 3 uniform(outline), 4 drop-shadow-left,
 5 drop-shadow-right */

int32 dX, dY;
/* dX, dY is the thickness of the border. (Should be 1 or 2)
*/

uint32 R,G,B;
/* R,G,B, is the color of the character.
 (All values should be between 0 and 255) */

uint32 borderR, borderG, borderB;
/* borderR, borderG, borderB is the color of the border.
 (All values should be between 0 and 255) */

uint32 sunnyBorderR, sunnyBorderG, sunnyBorderB;
/* This is the sunny side of the border. Only used for raised
Font Fusion Core API 95

Bitstream Font Fusion® 5.0a Reference Guide
 and depressed styles
 (All values should be between 0 and 255)
 */

} T2K_TVFilterParams;

Flicker Filter Example

This is intended to be an example that can be tweaked further on the actual
deployment hardware.

It implements this filter:

1 4 1
2 4 2
1 4 1

OR this filter if FAST_FLICKER_FILTER is defined

0 4 0
2 4 2
0 4 0

If you can not tell the difference then use the fast version. This should be
tweaked for the deployment hardware. A piece of advice is that you should not
blur the image more than necessary.

void T2K_FlickerFilterExample(T2K *t, void *params)
===> params is unused and should be set to NULL.
 t is the pointer to the T2K scaler object
96 Font Fusion Core API

Chapter 3
Using Glow Filter

The glow filter adds a neon-like glow effect to the glyphs, making it appear as
light source is being shined up from underneath the character.

T2K_CreateGlowCharacter() function should be used to create a glow effect
on a character. Macro ENABLE_GLOWFILTER should be turned ON to use this
API.

void T2K_CreateGlowCharacter(
T2K *t,
void *params)

Arguments

t is a pointer to the T2K scaler object.

params is the address of the structure type T2K_GlowFilerParams.

Description

The T2K_CreateGlowCharacter() API creates a glow effect around an
antialiased character. This function can be invoked right after
T2K_RenderGlyph().

For best results, use T2K_RenderGlyph() with grayscale antialiasing mode.

T2K_GlowFilerParams is a structure of the following type:

typedef struct {
uint8 greyScaleLevel;
int32 spread;
int32 glow;
uint32 Red;
uint32 Green;
uint32 Blue;
uint32 glowR;
uint32 glowG;
uint32 glowB;

} T2K_GlowFilerParams;
Font Fusion Core API 97

Bitstream Font Fusion® 5.0a Reference Guide
In the structure T2K_GlowFilerParams,

greyScaleLevel refers to the monochrome or grayscale mode

spread refers to the range of the glow, which can vary from 2 to 10.

glow is the intensity of the glow.

Red is the fore color of the character, the value should be between 0 and 255.

Green is the fore color of the character, the value should be between 0 and 255.

Blue is the fore color of the character, the value should be between 0 and 255.

glowR is the color of the glow, the value should be between 0 and 255.

glowG is the color of the glow, the value should be between 0 and 255.

glowB is the color of the glow, the value should be between 0 and 255.
98 Font Fusion Core API

Chapter 3
Using Multiple Filters

You can combine multiple filters through the use of the
T2K_MultipleFilter() function. Turn on the ENABLE_MULTIPLE_FILTERS
compile-time option in order to use these functions. Create the multiple filter as
described below, then apply it in the same way as you would apply any other
filter. Delete a filter in the multiple filter combination with the
T2K_MultipleFilter_Delete() function.

NOTE: The multiple filter function still caches bitmaps even if you do not have
any filters defined.

To create a multiple filter

1 Define the multiple filter parameter structure:

T2K_MultipleFilterParams MultiFilterParams;

2 Initialize the multiple filter:

T2K_MultipleFilter_Init(&T2K, (void*)&MultiFilterParams);

3 Add the first filter function:

T2K_MultipleFilter_Add(&MultiFilterParams,
 filterTag,
 filterIndex,
 (FF_T2K_FIlterFuncPtr)Filter_1,
 Filter_1_params,
 &errCode);

4 Add the second filter function:

T2K_MultipleFilter_Add(&MultiFilterParams,
 filterTag,
 filterIndex,
 (FF_T2K_FIlterFuncPtr)Filter_2,
 Filter_2_params,
 &errCode);

5 Continue adding the filter functions you require.

NOTE: Remember that the order you enter the functions is not the order in which
they are applied. The filterIndex sets the order of how multiple filters are applied.
For example, if the underscore filter is followed by the bold filter, you will
Font Fusion Core API 99

Bitstream Font Fusion® 5.0a Reference Guide
embolden the underscore, while if you reverse this order, the underscore will not
be emboldened.

Creating Outlines

You can create outlines of a character through the use of
T2K_CreateOutlineCharacter() function. Turn ON the
ENABLE_OUTLINEFILTER compile-time option in order to use this filter
function.

The T2K_CreateOutlineCharacter() filter function is capable of creating
outlines in Monochrome and Grayscale mode, whereas
T2K_CreateBorderedCharacter() creates a colored border and works in
baseARGB mode.

void T2K_CreateOutlineCharacter(
T2K *t,
void *params)

Arguments

t is a pointer to the T2K scaler object.

params is a void pointer that points at T2K_OutlineFilterParams.

Description

Creates an outlined character. This function can be invoked right after
T2K_RenderGlyph().

Getting the Font Name

To get the font name, call T2K_SetNameString() after you call
Set_PlatformID() and Set_PlatformSpecificID().

It sets the public field nameString8 or nameString16 in the Font Fusion
object (structure).

To use Microsoft Unicode mapping and names, include these arguments:

/* Use 3,1 to pick Microsoft Unicode character mapping */
100 Font Fusion Core API

Chapter 3
Set_PlatformID(scaler, 3);
Set_PlatformSpecificID(scaler, 1);
/* Pick American English and the full font name */
T2K_SetNameString(scaler, 0x0409, 4);

Enabling “sbits”

“Sbits” are embedded bitmaps. Font Fusion supports modification of the source
sbits through the transformation matrix when you call one of the
RenderGlyph() functions. This enables your application to resize, oblique,
mirror, or rotate embedded bitmaps.

To enable sbits

1 Set the ENABLE_SBITS compile-time option in config.h to enable the
code necessary to process embedded bitmaps.

2 For T2K_NewTransformation(enableSbits), set enableSbits to
true.

Use the following functions to query whether you enabled the sbits or whether
sbits exist in your fonts.

T2K_FontSbitsAreEnabled() is a query method to check whether or not
you enabled the “sbits”.
T2K_FontSbitsExists() is a query method to check whether or not a
TrueType, native T2K, or PFR font contains any “sbits.”
T2K_GlyphSbitsExists() is a query method to check if a particular glyph
exists in sbit format for the current point size in a TrueType or native T2K
font. If you need to use characterCode, then map it to glyphIndex by
using T2K_GetGlyphIndex() first.

Use the following macros to get the extended sbits support:

ENABLE_SBITS_TRANSFORM to enable the transformation (as scaling/
obliquing) of bitmap fonts.
ENABLE_SBITS_COMPRESSION if you need compressed CJK bitmap font
support.
Font Fusion Core API 101

Bitstream Font Fusion® 5.0a Reference Guide
T2K Functions

void DeleteT2K(
T2K *t,
int *errCode)

Arguments

t is a pointer to the T2K object you created when calling NewT2K().

errCode is a pointer to the returned error code.

Description

DeleteT2K() deletes the T2K object you previously created.

void FF_Set_T2K_Core_FilterReference(
T2K *theCache,
FF_T2K_FilterFuncPtr funcptr,
void *params)

Arguments

theCache is a pointer to the cache class returned from FF_CM_New().

funcptr is a function pointer to the actual filter function.

params is a pointer to an optional parameter block for the filter function.

Description

FF_Set_T2K_Core_FilterReference() sets parameters related to filtering.
These parameters are stored and applied to new characters that Font Fusion
creates.
102 Font Fusion Core API

Chapter 3
T2K *NewT2K(
tsiMemObject *mem,
sfntClass *font,
int *errCode)

Arguments

mem is a pointer to the tsiMemObject.

font is a pointer to the sfntClass (font) object.

errCode is a pointer to the returned error code.

Description

NewT2K() is a pointer to a new T2K object that this function creates.

void T2K_ConvertGlyphSplineType(
T2K *t,
short curveTypeOut,
int *errCode)

Arguments

t is a pointer to the T2K object itself.

curveTypeOut specifies the kind of curve you want to convert the outlines to at
run time. Valid values, as follows, return glyphs made up of:

1 First-degree poly-lines (straight-line segments)

2 Second-degree quadratic B-splines (parabolas and straight-line segments)

3 Third-degree cubic Bézier curves (cubics and straight-line segments)

errCode is a pointer to the returned errorCode.

Description

T2K_ConvertGlyphSplineType() allows you to access outline data in the
outline format you need, no matter what format the original outline font was in.
If the outline format of the original font is different from the requested format,
Font Fusion Core API 103

Bitstream Font Fusion® 5.0a Reference Guide
Font Fusion does a run-time curve conversion of the outlines. You can request
the outlines as:

first degree poly-lines

second-degree quadratic B-splines

third-degree cubic Béziers

This function creates a glyph with outlines of curveTypeOut, independent of
the original curve type.

Call this function after T2K_RenderGlyph(), but before you call
T2K_PurgeMemory(). Make sure you set the T2K_RETURN_OUTLINES bit in
the function T2K_RenderGlyph().

Note that you also have to define the compile-time option
ENABLE_FF_CURVE_CONVERSION.

void T2K_CreateUnderlineCharacter(
T2K *t,
void *params)

Arguments

t is a pointer to the T2K scaler object.

params is a void pointer that points to the T2K_UnderLineFilterParams
structure, described below.

Description

This filter function operates as two filters in one, depending on the
isUnderline value set in the structure. Set this value to true to create an
underline, or false to create a strikethrough. For gray and monochrome
displays, set mode to 0. If you are using extended LCD modes, send the LCD
mode. See “Extended LCD Modes” on page 74 for a list of these modes.
104 Font Fusion Core API

Chapter 3
The T2K_UnderLineFilterParams() structure is expressed by the code
below.

typedef struct {
uint8 greyScaleLevel; /* greyScaleLevel used */
uint8 isUnderline; /* non zero if underline is needed

 else strikethrough */
#ifdef ENABLE_EXTENDED_LCD_OPTION

/* 0 for gray and monochrome else for LCD mode */
uint16 mode; /* If ext LCD modes are used then

the
 modes used should be passed in
 this member variable */

#endif /* ENABLE_EXTENDED_LCD_OPTION */
} T2K_UnderLineFilterParams;

T2K_KernPair *T2K_FindKernPairs(
T2K *t,
uint16 *baseSet,
int baseLength,
uint16 charCode,
int *pairCountPtr)

Arguments

t is a pointer to the T2K object itself.

baseSet is a pointer to a baseLength number of 16-bit-wide character codes.

baseLength is the number of 16-bit-wide character codes.

charCode is the character code.

pairCountPtr is a pointer to the number of kerning pairs found between the
character with the charCode combined with itself and all the members of
baseSet.

Description

Call this function to return a pointer to T2K_KernPair() with
*pairCountPtr entries. The entries consist of all kern pairs between (1) the
Font Fusion Core API 105

Bitstream Font Fusion® 5.0a Reference Guide
character with the character code combined with itself and (2) all the members of
baseSet. (A character should only appear once in baseSet.)

Your application must de-allocate the pointer if it is not equal to NULL:

tsi_DeAllocMem(t->mem, pointer)

T2K_KernPair structure and #ifdef statements

#ifdef ENABLE_KERNING
typedef struct {
uint16 left; /* left character code */
uint16 right; /* right character code */
int16 xKern; /* value in FUnits */
int16 yKern; /* value in FUnits */
} T2K_KernPair;
#endif /* ENABLE_KERNING */

#ifdef ENABLE_LINE_LAYOUT

#ifdef LINEAR_LAYOUT_EXAMPLE

char T2K_FontSbitsAreEnabled(
T2K *t)

Arguments

t is a pointer to the T2K object itself.

Description

This is a macro that checks whether or not you enabled “sbits” (embedded
bitmaps).

char T2K_FontSbitsExists(
T2K *t)

Arguments

t is a pointer to the T2K object itself.
106 Font Fusion Core API

Chapter 3
Description

This is a macro that checks whether or not a TrueType, native T2K, or PFR font
contains any “sbits” (embedded bitmaps).

void T2K_GaspifyTheCmds(
T2K *t
greyScaleLevelPtr
cmdInPtr)

Arguments

t is a pointer to the T2K object itself.

greyScaleLevelPtr is a pointer to the level of anti-aliasing you want to apply
to the T2K_RenderGlyph(), FF_FM_RenderGlyph() or
FF_CM_RenderGlyph() functions.

cmdInPtr is a pointer to the command argument you intend to pass to the
T2K_RenderGlyph(), FF_CM_RenderGlyph(), or FF_FM_RenderGlyph()
functions.

Description

Modifies the greyScaleLevel and cmdIn parameters for T2K_RenderGlyph
according to the wishes of the Grid-fitting and Scan-Conversion Procedure
(GASP) Table table if one exists. This is dependent on if
ENABLE_GASP_TABLE_SUPPORT is defined.

See http://www.microsoft.com/OpenType/otspec/GASP.HTM or
http://partners.adobe.com/asn/developer/opentype/gasp.html for more
information on GASP tables.

Example

T2K_GaspifyTheCmds(scaler, &greyScaleLevel, &cmd);
T2K_RenderGlyph(scaler, charCode, 0, 0, greyScaleLevel,
cmd, &errCode);
Font Fusion Core API 107

http://www.microsoft.com/OpenType/otspec/GASP.HTM
http://partners.adobe.com/asn/developer/opentype/gasp.html

Bitstream Font Fusion® 5.0a Reference Guide
int T2K_GetBytesConsumed(
T2K *t)

Arguments

t is a pointer to the T2K object itself.

Description

Some TrueType fonts support mixed 1 and 2 byte streams using the format 2
character map. This macro returns the number of bytes of the input character
code that were used to resolve to a glyph index.

uint16 T2K_GetGlyphIndex(
T2K *t,
uint16 charCode)

Arguments

t is a pointer to the T2K object itself.

charCode is the character code.

Description

Call this function to get the position of the character image in a font, given the
character code. The glyph index is simply a number from 0 to n-1, assuming the
font contains n number of glyphs:
(N = T2K_GetNumGlyphsInFont(scaler);)

void T2K_GetIdealLineWidth(
T2K *t,
const T2KCharInfo cArr[],
long lineWidth[],
T2KLayout out[])

Arguments

t is a pointer to the T2K object itself.
108 Font Fusion Core API

Chapter 3
cArr[] is an array containing one entry per character. Each entry is of type
T2KCharInfo, described below.

lineWidth[] is an array filled in by T2K_GetIdealLineWidth() for later use
by T2K_LayoutString(). It contains the ideal linearly-scaled width for the
entire string (taking kerning into account).

out contains data that T2K_LayoutString() needs later.

Description

Call this function before T2K_LayoutString().

Use both functions to first get the line length you want, and then lay out a
character string along it.

The desired line length is the sum of the fractional, advance width of all the
characters. However, one problem is that hinted characters—such as you find in
TrueType fonts—produce integer advance widths, and this integer advance width
can in some cases be far removed from an ideal, linearly-scaled advance width.

The integer width makes the text look better, but then you may be faced with the
opposite goal of WYSIWYG. For WYSIWYG, the line lengths of text have to scale
linearly. T2K_LayoutString() achieves this goal by primarily putting the
distortion to the integer advance widths, which is caused by the overall linear
line width goal, into the space characters on the line.

T2K_GetIdealLineWidth() fills in for each character the integer, non-linear
advance widths.

Then in the final step, when your application calls
T2K_GetIdealLineWidth(), the function simply modifies the non-linear
metrics in the out parameter so that the total line width becomes equal to the
linearly-scaled line width. In this way, the linearly- scaled WYSIWYG is
maintained between two devices, for instance, the screen and printer.

T2KCharInfo

Before calling T2K_GetIdealLineWidth(), your application needs to fill in all
the fields in the cArr array. There is one entry per character. Each entry is of type
T2KCharInfo. See the code below for an example:

typedef struct {
/* input */
Font Fusion Core API 109

Bitstream Font Fusion® 5.0a Reference Guide
uint16 charCode;
uint16 glyphIndex;
F16Dot16 AdvanceWidth16Dot16[T2K_NUM_INDECES];
F16Dot16 LinearAdvanceWidth16Dot16[T2K_NUM_INDECES];
F26Dot6 Corner[T2K_NUM_INDECES]; /* fLeft26Dot6,

fTop26Dot6 */
long Dimension[T2K_NUM_INDECES]; /* width, height */

} T2KCharInfo;

Arguments

charCode is the character code.

glyphIndex is the glyph index.

AdvanceWidth16Dot16 is the gridded/hinted advance width in 16.16 pixels.

LinearAdvanceWidth16Dot16 is the linearly-scaled advance width in 16.16
pixels.

Corner is equal to the T2K fields fLeft26Dot6, fTop26Dot6 the scan-
conversion process returns when Font Fusion renders glyphs.

Dimension is equal to the T2K bitmap width and height the scan-conversion
process returns when Font Fusion renders glyphs.
110 Font Fusion Core API

Chapter 3
int T2K_GlyphSbitsExists(
T2K *t)
uint16 glyphIndex,
int *errCode)

Arguments

t is a pointer to the T2K object itself.

glyphIndex is the position of the character image in a TrueType, native T2K, or
PFR font.

errCode is a pointer to the returned errorCode.

Description

Call this function to check whether or not a particular glyph exists in sbit
format for the current point size in a TrueType or native T2K font. If you need to
use characterCode, then map it to glyphIndex by using
T2K_GetGlyphIndex() first.

void T2K_LayoutString(
const T2KCharInfo cArr[],
long lineWidth[],
T2KLayout out[])

Arguments

cArr[] is an array containing one entry per character. Each entry is of type
T2KCharInfo, described in the previous section.

lineWidth[] is an array filled in by T2K_GetIdealLineWidth(). It contains
the ideal linearly-scaled width for the entire string (taking kerning into account).

out contains data that T2K_GetIdealLineWidth() provides.

Description

Call this function after T2K_GetIdealLineWidth(). See the previous function
for more information.
Font Fusion Core API 111

Bitstream Font Fusion® 5.0a Reference Guide
uint32 T2K_MeasureTextInX(
T2K *t,
const uint16 *text,
int16 *xKernValuesInFUnits,
uint32 numChars)

Arguments

t is a pointer to the T2K object itself.

text is a pointer to a 16-bit-wide character string. Note that text has to be at
least numChars long.

xKernValuesInFUnits is a pointer to an array of kerning values. Note that
xKernValuesInFUnits has to be at least numChars long.

numChars is the number of characters in the text character string.

Description

Call this function to get the total pixel width of a character string and compute
its kerning values. This function returns a uint32 value that is the total length
of the string in integer pixel units.

void T2K_MultipleFilter(
T2K *t,
void *params)

Arguments

t is a pointer to the T2K object itself.

params is a void pointer that points to the T2K_MultipleFilterParams
structure, described below.

Description

This function makes a character glyph pass through all the filters that are
registered to it. The T2K_MultipleFilterParams structure is expressed by
the code below.
112 Font Fusion Core API

Chapter 3
typedef struct {
/* The array of filter method pointers */
FF_T2K_FilterFuncPtr activeFilters[T2K_NUM_MULTIPLE_FILTERS
];
/* The array of filter arguments */
void *parameters[T2K_NUM_MULTIPLE_FILTERS];
/* Current number of registered filters */
int16 numOfFilters;
/* Current filter tag */
uint8 filterTag;
} T2K_MultipleFilterParams;

See “Using Multiple Filters” on page 99 for details.

void T2K_MultipleFilter_Add(
T2K_MultipleFilterParams *filterParams,
uint8 filterTag,
uint8 index,
FF_T2K_FilterFuncPtr filterToAdd,
void *Params,
int *errCode);

Arguments

filterParams is a pointer to the T2K_MultipleFilterParams structure.

filterTag is the filter that should be ORed with the current filter.

index is the index at which the filter will be set. This value also decides the
order at which the filter will be applied.

filterToAdd is a pointer to the filter method that has to be added.

Params is a pointer the arguments that have to be passed when this particular
filter is applied.

errCode will be non-zero when reporting exceptional conditions.

Description

Adds a new filter to the multiple filter class. The new filterTag is returned if
the addition of the new filter is successful.
Font Fusion Core API 113

Bitstream Font Fusion® 5.0a Reference Guide
void T2K_MultipleFilter_Delete(
T2K_MultipleFilterParams *filterParams,
uint8 filterTag,
uint8 index,
int *errCode)

Arguments

filterParams is a pointer to the T2K_MultipleFilterParams structure.

filterTag is the filter that should be ORed with the current filter.

index is the index at which the filter will be deleted.

filterToAdd is a pointer to the filter method that has to be added.

errCode will be non-zero when reporting exceptional conditions.

Description

Deletes the existing filter from the multiple filter class. If the function
successfully deletes the filter, it returns the new filterTag.

void T2K_MultipleFilter_Init(
T2K_MultipleFilterParams *filterParams)

Arguments

filterParams is a pointer to the T2K_MultipleFilterParams structure.

Description

Initializes the multiple filter class.
114 Font Fusion Core API

Chapter 3
void T2K_NewTransformation(
T2K *t
int doSetUpNow
long xRes
long yRes
T2K_TRANS_MATRIX *trans
int enableSbits
int *errCode)

Arguments

t is a pointer to the T2K object.

doSetUpNow determines if Font Fusion needs to do some setup work now or
later. Recommended setting is == true.

xRes and yRes represent the resolution of the output device in dots per inch.
For example, a Windows screen device uses 96 for xRes and yRes.

trans is a pointer to the transformation matrix. Basically, you specify:

the x and y resolutions
a 2*2 transformation matrix (includes the point size)
a true or false setting to enable or disable embedded bitmaps

Then you call T2K_RenderGlyph() to actually get outline or bitmap data. After
you are done with the output data, you need to call T2K_PurgeMemory() to
free up memory.

enableSbits enables embedded bitmaps if they exist.

errCode is a pointer to the returned error code.

Description

T2K_NewTransformation() allows you to set the transformation matrix and
x and y resolutions when you render characters and strings. It informs the T2K
object about the current transformation and size.
Font Fusion Core API 115

Bitstream Font Fusion® 5.0a Reference Guide
void T2K_PurgeMemory(
T2K *t,
int level,
int *errCode)

Arguments

t is a pointer to the T2K object itself.

Normally, set level = 1.

errCode is a pointer to the returned errorCode.

Description

Call the function T2K_PurgeMemory() after you are done with the output data
from T2K_RenderGlyph().

Also, set the following compile-time option:

#define MAX_PURGE_LEVEL 2

void T2K_RenderGlyph(
T2K *t,
long code,
int8 xFracPenDelta,
int8 yFracPenDelta,
uint8 greyScaleLevel,
uint16 cmd,
int *errCode)

Arguments

t is a pointer to the T2K object itself.

code usually specifies the code for the character you want to render. However, if
you want to use the glyph index instead, then set the T2K_CODE_IS_GINDEX bit
in the cmd argument of T2K_RenderGlyph(). The glyph index is simply a
number from 0 to n-1, assuming the font contains n number of glyphs:
(N = T2K_GetNumGlyphsInFont(scaler);)
116 Font Fusion Core API

Chapter 3
xFracPenDelta and yFracPenDelta are normally set to zero. You can use
them with non-zero values if you are also using fractional character positioning.

greyScaleLevel describes the level of anti-aliasing you want to apply. See the
section below.

cmd describes to Font Fusion what to do with various bitflags. See the section
below. You can also refer to comments that define the bitflags in t2k.h.

errCode is a pointer to the returned errorCode.

Description

T2K_RenderGlyph() allows you to create a character image.

Bits for the greyScaleLevel field

#define BLACK_AND_WHITE_BITMAP 0
#define GREY_SCALE_BITMAP_LOW_QUALITY 1
#define GREY_SCALE_BITMAP_MEDIUM_QUALITY 2
#define GREY_SCALE_BITMAP_HIGH_QUALITY 3 /* Recommended for grey-scale */
#define GREY_SCALE_BITMAP_HIGHER_QUALITY 4
#define GREY_SCALE_BITMAP_EXTREME_QUALITY 5 /* Slowest */

/* When doing grey-scale the scan- converter returns values in the range
T2K_WHITE_VALUE -- T2K_BLACK_VALUE */

#define T2K_BLACK_VALUE 126
#define T2K_WHITE_VALUE 0

/* The Caller HAS to deallocate outlines && t->baseAddr with
T2K_PurgeMemory(t, 1) */

/* fracPenDelta should be between 0 and 63, 0 represents the normal pixel
alignment,
 16 represents a quarter pixel offset to the right,
 32 represents a half pixel offset of the character to the right,
 and -16 represents a quarter/4 pixel shift to the left. */

/* For Normal integer character positioning set fracPenDelta == 0 */
/* IPenPos = Trunc(fracPenPos); FracPenDelta = fPenPos - IPenPos */
/* The bitmap data is relative to IPenPos, NOT fracPenPos */

/*
 * The T2K call to render a character.
 *
 * t: is a pointer to the T2K object itself.
 * code: If the bit T2K_CODE_IS_GINDEX is set in 'cmd' it is the glyphIndex,
otherwise it is the characterCode for the character we are rendering.
Font Fusion Core API 117

Bitstream Font Fusion® 5.0a Reference Guide
 * xFracPenDelta, yFracPenDelta: Normally set to zero. Can be used with non-zero
values if fractional character positioning is used.
 * cmd: Describes to T2K what is to be done with various bitflags. See commetns
that define the bitflags in T2K.H.
 * errCode: is a pointer to the returned errorCode.
 *
 */

Bits for the cmd field

#define T2K_GRID_FIT 0x0001
#define T2K_SCAN_CONVERT 0x0002
#define T2K_RETURN_OUTLINES 0x0004
#define T2K_CODE_IS_GINDEX 0x0008 /* Otherwise it is the

charactercode */
#define T2K_USE_FRAC_PEN 0x0010
#define T2K_SKIP_SCAN_BM 0x0020 /* Everything works as

normal, however we do _not_
generate the actual bitmap */

#define T2K_TV_MODE 0x0040 /* Ideal for TV if you
use integer metrics, and
gray-scale (please turn off
T2K_GRID_FIT) */

#define T2K_NAT_GRID_FIT 0x0080 /* Enables native TrueType
 hint/gridding support */

#define T2K_LCD_MODE 0x0100 /* Ideal for LCD screens */
#define T2K_Y_ALIGN 0x0200 /* Ideal with T2K_LCD_MODE,

 and T2K_TV_MODE */
#define T2K_TV_MODE_2 (T2K_TV_MODE | T2K_Y_ALIGN)
#define T2K_LCD_MODE_2 (T2K_LCD_MODE | T2K_Y_ALIGN)
#define T2K_LCD_MODE_3 (T2K_LCD_MODE | T2K_GRID_FIT)
#define T2K_LCD_MODE_4 (T2K_LCD_MODE | T2K_NAT_GRID_FIT)

#define EXT_HOR_RGB 0x1000 /* This means R G B */
#define EXT_HOR_BGR 0x2000 /* This means B G R */
#define EXT_VER_RGB 0x4000 /* This means R
 G
 B */
#define EXT_VER_BGR 0x8000 /* This means B
 G
 R */
#define T2K_EXT_LCD_H_RGB (T2K_LCD_MODE | T2K_NAT_GRID_FIT | EXT_HOR_RGB)

/* This means R G B */
#define T2K_EXT_LCD_H_BGR (T2K_LCD_MODE | T2K_NAT_GRID_FIT | EXT_HOR_BGR)

/* This means B G R */
#define T2K_EXT_LCD_V_RGB (T2K_LCD_MODE | T2K_NAT_GRID_FIT | EXT_VER_RGB)

/* This means R
 G
 B */

#define T2K_EXT_LCD_V_BGR (T2K_LCD_MODE | T2K_NAT_GRID_FIT | EXT_VER_BGR)
/* This means B
 G
 R */
118 Font Fusion Core API

Chapter 3
#define T2K_VERTICAL 0x0400 /* Causes vertical rotation
 and positioning */

#define T2K_VERT_SUB 0x0800 /* Enables use of vertical
 substitution characters
 from the VT data
 segment */

void T2K_SetNameString(
T2K *t,
uint16 languageID,
uint16 nameID)

Arguments

t is a pointer to the T2K object itself.

Set t->nameString8 or t->nameString16 depending on whether or not the
name is encoded as a byte string or as a 16-bit Unicode string.

languageID and nameID are the same as what Microsoft’s TrueType
documentation specifies for the name table.

Description

Call this function after Set_PlatformID() and
Set_PlatformSpecificID().

void T2K_TransformXFunits(
T2K *t,
short xValueInFUnits,
F16Dot16 *x,
F16Dot16 *y)

Arguments

t is a pointer to the T2K object itself.

xValueInFUnits is the x font unit value. It is a measurement (e.g., a kerning
value) in FUnits (font units). There are 1000 FUnits for the em in Type 1 fonts
and, typically, 2048 FUnits for the em in TrueType fonts. So, for example, in a
Font Fusion Core API 119

Bitstream Font Fusion® 5.0a Reference Guide
Type 1 font, if you have a distance representing 7% of the em, then your
application passes in 0.07*1000 = 70 as the value in FUnits.

x is a pointer to the x fractional pixel value, i.e., a value in 16.16 format.

y is a pointer to the y fractional pixel value, i.e., a value in 16.16 format.

Description

Call this function to transform xInFUnits into 16.16 x and y values.

Font Fusion stores outlines and outline metrics in font units or “FUnits.” Type 1
fonts have 1000 FUnits per em and TrueType fonts typically have 2048 FUnits per
em.

When we render characters, we produce output in a pixel space. This function
simply maps measurements in FUnits into this output pixel domain. Note that
the results are in 16.16 format. This means we have 16 integer bits and 16
fractional bits. So, in binary, 1.5 pixels would be represented as

00000000 00000001 10000000 00000000

and in hex it would be

0x00011000

A typical use is that you have a kerning value in FUnits. But before you can draw
a character or string in pixel space, you use this function to map the FUnit value
into the pixel domain. Note that the mapping is size- and transformation-
dependent.

void T2K_TransformYFunits(
T2K *t,
short yValueInFUnits,
F16Dot16 *x,
F16Dot16 *y)

Arguments

t is a pointer to the T2K object itself.

yValueInFUnits is the y font unit value. It is a measurement (e.g., a kerning
value) in FUnits (font units). There are 1000 FUnits for the em in Type 1 fonts
120 Font Fusion Core API

Chapter 3
and, typically, 2048 FUnits for the em in TrueType fonts. So, for example, in a
Type 1 font, if you have a distance representing 7% of the em, then your
application passes in 0.07*1000 = 70 as the value in FUnits.

x is a pointer to the x fractional pixel value, i.e., a value in 16.16 format.

y is a pointer to the y fractional pixel value, i.e., a value in 16.16 format.

Description

Call this function to transform yInFUnits into 16.16 x and y values. See the
previous function for more information.
Font Fusion Core API 121

Bitstream Font Fusion® 5.0a Reference Guide
Functions for Fractional
Sizing

Font Fusion supports fractional sizing of characters with a high precision level.
The enhanced light-weight, processor-friendly Y-direction hinting process in
fractional mode provides crisp character output.

The compile conditional ENABLE_FRACTIONAL_SIZE should be turned ON to
include the fractional size support.

The figure below shows the fractional sizing applied to the text:

Fractional size in Font Fusion with enabled Y-align hinting settings
122 Font Fusion Core API

Chapter 3
T2K_SetFracSizeMode(
t2k,
bSet)

Arguments

t is the pointer to the t2k object itself.

bSet is the parameter to enable or disable the fractional size option. Set the
parameter to nonzero if you want to enable the fractional size option and 0 to
disable.

Description

The method T2K_SetFracSizeMode() sets the fractional size mode of scaler.
The API T2K_NewTranformation should be called after setting this property.
Font Fusion Core API 123

Bitstream Font Fusion® 5.0a Reference Guide
Functions for SmartScale
Mobile devices have fixed screen parameters that force the characters to fit
within the set height restrictions. This results in clipping of character portions
that extend beyond the bounding box. Font Fusion overcomes this clipping
problem by including the SmartScale mechanism that scales the characters such
that full characters is visible within fixed display region. The technology ensures
that the scaled characters are in proportion to the other characters in the font.

Few characters in a font may extend beyond the set bounding box limit.
Examples of such characters include composite glyphs or glyph with extended
attributes, such as accent acute, grave, and other diacritical marks or characters
with typographic descenders as in lowercase g, p, or y. The SmartScale
technology with Font Fusion intelligently scales these characters to fit within the
bounding box without losing on readability and legibility.

Normal and zoomed-in view of original and smart scale text rendered
using Font Fusion. Smart scaling regulates the adjustment of characters
that extend beyond the set height parameters and may get clipped when
rendered on small screen devices

The SmartScale technology works in all three rendering modes, monochrome,
grayscale, and LCD mode. The mechanism adds slight performance overhead for
the candidate glyphs, which is negligible in case the cache manager is used, since
once the scaled glyph is rendered, it is also stored in the cache for next time
reference.
124 Font Fusion Core API

Chapter 3
T2K_SetSmartScale(
T2K * t,
int bSet)

Arguments

t is the pointer to the t2k object itself.

bSet is the parameter to enable or disable the SmartScale option. Set the
parameter to nonzero if you want to enable the SmartScale option and 0 to
disable.

Description

Call the T2K_SetSmartScale() API after creating t2k object. The t2k object
can be created using:

t2k = NewT2K(tsiMemObject *mem, sfntClass *font, int
*errCode)

If the parameter bSet is set to a nonzero value in T2K_SetSmartScale(), the
function T2K_RenderGlyph() renders a smart-scaled glyph. Macro
ENABLE_SMARTSCALE should be turned ON to use this API.
Font Fusion Core API 125

Bitstream Font Fusion® 5.0a Reference Guide
Functions for Vertical Writing
Proper rendering of far East Asian scripts including kanji variants and
proportional Chinese-Japanese-Korean (CJK) requires vertical processing
support. Vertical processing includes both translation/rotation as well as
substitution of appropriate glyph variant (with changed orientation) for vertical
writing.

The figure below shows how the vertical substitution works. When the text is
rendered vertically without turning on vertical substitution (left side of the
figure), the parentheses appear incorrectly. However, when vertical substitution
is turned on (right side of the figure) the parentheses appear in the appropriate
orientation.

Vertical Substitution forms in a font

To enable the vertical processing, the following RenderGlyph() cmd options are
used:

cmd Description

T2K_VERTICAL Causes vertical rotation and positioning

T2K_VERT_SUB Specifies the use of Vertical substitution
characters from the VT data segment (also used
for GSUB support in TrueType fonts)

()
(

)(

)

Horizontal Text

Vertical text with no
vertical substitution
glyph form in the font

Vertical text with
appropriate vertical
substitution glyph
forms in the font
126 Font Fusion Core API

Chapter 3
Functions for Translating Font
Data

ExtractPureT1FromPCType1()
ExtractPureT1FromMacPOSTResources()

unsigned char *ExtractPureT1FromPCType1(
unsigned char *src,
unsigned long *length,
int *errCode)

Arguments

src is a pointer to the data to transform (the .PFB data read into memory).

length is a pointer to the length of the data. The value that this function returns
is the length of the resulting font file data.

errCode is a pointer to the returned errorCode.

Description

Call this function to translate PC .PFB font file data into a pure, non-segmented
form, which Font Fusion can then process.

char *ExtractPureT1FromMacPOSTResources(
tsiMemObject *mem,
short refNum,
unsigned long *length)

Arguments

mem is a pointer to the tsiMemObject.

refnum is the resource reference number for the font.

length is a pointer to the length of the data. The value that this function returns
is the length of the resulting font file data.
Font Fusion Core API 127

Bitstream Font Fusion® 5.0a Reference Guide
Description

Call this function to translate Macintosh Type 1 font file data into a pure, non-
segmented form which Font Fusion can then process.
128 Font Fusion Core API

Chapter 3
Functions to Force Type1
Encoding

T2K_GetT1Encoding

T2K_ForceT1Encoding

T2K_GetT1Encoding(
T2K *t)

Arguments

t is the pointer to the T2K object itself.

Description

The function returns the current Type1 encoding type used to encode the font.
Macro ENABLE_T1_FORCE_ENCODING should be turned ON to use this API.

Returns

Returns the current encoding type of Font Fusion being currently used to encode
the Type1 font.

The FF_T1_Encoding enumeration is of the following type:

typedef enum {
FF_T1_ADOBE_STANDARD_ENCODING,
FF_T1_ISO_LATIN1_ENCODING,
FF_T1_MAC_ENCODING,
FF_T1_CUSTOM_ENCODING,
FF_T1_DEFAULT_ENCODING = 0xffff,

}FF_T1_Encoding;

T2K_ForceT1Encoding(
T2K *t,
FF_T1_Encoding encType)
Font Fusion Core API 129

Bitstream Font Fusion® 5.0a Reference Guide
Arguments

t is the pointer to the T2K object

encType refers to the FF_T1_Encoding enumeration that lists the different
font encoding types.

Description

The T2K_ForceT1Encoding() API forces the encoding on Type1 font. The
method should be called only once during the lifetime of the font. Forcing an
encoding can slow down Font Fusion performance.

Macro ENABLE_T1_FORCE_ENCODING should be turned ON to use this API.

Returns

Returns 0 if it fails to force the encoding else 1.
130 Font Fusion Core API

Chapter 3
Functions For Use With
Stroke-Based Fonts

T2K_GetNumAxes()
T2K_SetCoordinate()

int32 T2K_GetNumAxes(
T2K *t)

Arguments

t is a pointer to the T2K object itself.

Description

Returns the number of axes of the font specified. The return value will be one
only for Stroke-Based fonts. This is useful when using an algorithmic bold. If it is
a Stroke-Based font, use the T2K_SetCoordinate() function below to set an
algorithmic bold. Both of these functions are used to control the weight of
Stroke-Based font output.

void T2K_SetCoordinate(
T2K *t
int32 n
F16Dot16 value)

Arguments

t is a pointer to the T2K object itself.

int32 n indicates which axis on which to apply the F16Dot16 value.

F16Dot16 value is an emboldening amount specified as shown below.
Font Fusion Core API 131

Bitstream Font Fusion® 5.0a Reference Guide
Description

The “int32 n” in the T2K_SetCoordinate()call indicates which axis to apply the
“value” to. Since stroke fonts only have 1 axis this value must be 0 for stroke
fonts. The “value” is an emboldening amount specified as follows:

0x1000 (lightest) -> 0x8000 (50% = normal = default) -> 0x10000 (darkest)
132 Font Fusion Core API

Chapter 3
Additional Functions
FF_GetTTTablePointer()
FF_GlyphExists ()
ff_ColorTableType *FF_NewColorTable()
FF_PSNameToCharCode()
FF_SetBitRange255()

uint8 *FF_GetTTTablePointer(
T2K *t
long tag
unsigned char **ppTbl
size_t *bufSize
int *errCode)

Arguments

t is a pointer to the T2K object itself.

tag is a 4-byte identifier of the table, for example, ‘cmap’.

ppTbl is the address of a character pointer. This function will allocate this
pointer by calling CLIENT_MALLOC.

bufSize is a pointer to return the size of the table.

errCode is a pointer to the returned errorCode.

Description

This function returns a pointer to a memory buffer containing any arbitrary
TrueType table.
Font Fusion Core API 133

Bitstream Font Fusion® 5.0a Reference Guide
int FF_GlyphExists(
T2K *t
long code
uint16 cmd
int *errCode)

Arguments

t is a pointer to the T2K object itself.

code is a character code.

cmd describes to Font Fusion what to do with various bitflags.

errCode is a pointer to the returned errorCode.

Description

This function checks for the existence of characters in a font. This makes it
possible to test more certainly for glyph existence in font formats like Speedo,
TrueDoc, Type1 and CFF fonts. The function returns true if the glyph exists, false
otherwise.

void FF_ForceCMAPChange(
T2K *t
int *errCode)

Arguments

t is a pointer to the T2K object itself.

errCode is a pointer to the returned errorCode.

Description

This function forces the unloading of the current TrueType character map (cmap)
and loads the cmap * currently selected by Set_PlatformID(scaler, ID), and
Set_PlatformSpecificID(scaler, ID).
134 Font Fusion Core API

Chapter 3
This function presumes you have already used the set platform macros. The
values set by those macros will be ignored if a character forced the loading of the
TrueType cmap, unless you call this function.

ff_ColorTableType *FF_NewColorTable(
tsiMemObject *mem
uint16 Rb
uint16 Gb
uint16 Bb
uint16 Rf
uint16 Gf
uint16 Bf)

Arguments

mem is a pointer to the tsiMemObject.

Rb is the 8-bit red component of the background color.

Gb is the 8-bit green component of the background color.

Bb is the 8-bit blue component of the background color.

Rf is the 8-bit red component of the foreground color.

Gf is the 8-bit green component of the foreground color.

Bf is the 8-bit blue component of the foreground color.

Description

The ff_ColorTableType constructor supports color combinations other than
black against white. The foreground and background color values need to be in
the range 0-255.

Here are step by step instructions:

1 Use FF_NewColorTable to get the RGB colors for LCD display. These
colors will be indexed by any bitmap produced by T2K. If your platform is
using a Color Lookup Table, you will need to set these colors in that table.
This is how you extract the actual RGB colors from the T2K color table:
Font Fusion Core API 135

Bitstream Font Fusion® 5.0a Reference Guide
ff_ColorTableType *pColorTable;
/* for black text on white Set Rb = Gb = Bb = 0xff,
 * and Rf = Gf = Bf = 0. */
pColorTable = FF_NewColorTable(mem, Rb, Gb, Bb, Rf, Gf, Bf);
/* For all the indices in the bitmap you get the color by doing
this.*/
/* pColorTable->N will contain # elements in the array */
/* pColorTable->ARGB[0] contains the first ARGB value */
ARGB = pColorTable->ARGB[byte index from the bitmap];
B = (ARGB & 0xff); ARGB >>= 8;
G = (ARGB & 0xff); ARGB >>= 8;
R = (ARGB & 0xff);
/* When done free up the color-table, but please do not call this
per
* character for speed reasons. */
FF_DeleteColorTable(mem, pColorTable);

2 Do not invoke either FF_SetBitRange255() or FF_SetRemapTable().
If you need to shift the range, we recommend using a filter function.

3 Invoke T2K_NewTransformation() to set the transformation matrix.

NOTE:For standard LCD modes, set the xRes to 3 times the yRes, since
LCD screens contain three times as many colored pixels in the x direction as
in the y direction. Setting these resolutions in this way tells T2K we have a
non-square aspect ratio where the x resolution is three times higher than the
y resolution. You do not need to do this for the extended modes as these
modes handle the conversion internally.

4 In the cmd parameter, turn on the bit flag to the LCD mode option you want
to use, for example, T2K_EXT_LCD_H_RGB to use the most common
extended LCD mode.

5 In the greyScalelevel parameter to the T2K_RenderGlyph() function, set
GREY_SCALE_BITMAP_HIGH_QUALITY in the greyScalelevel
parameter .

You now have an indexed color bitmap. When you draw the bitmap you need to
take into account that the bitmap contains indices for the colored pixels.
136 Font Fusion Core API

Chapter 3
void FF_ModifyColorTable(
register ff_ColorTableType *t,
uint16 Rb,
uint16 Gb,
uint16 Bb,
uint16 Rf,
uint16 Gf,
uint16 Bf)

Arguments

t is a pointer to an existing Color Table to be modified.

Rb is the Red background value.

Gb is the Green background value.

Bb is the Blue background value.

Rf is the Red foreground value.

Gf is the Green foreground value.

Bf is the Blue foreground value.

Description

This routine modifies the existing colorTable (pointed to by argument “t”) with
the specified foreground and background values.
Font Fusion Core API 137

Bitstream Font Fusion® 5.0a Reference Guide
int FF_PSNameToCharCode(
T2K *t
char *PSName
int *errCode)

Arguments

t is a pointer to the T2K object itself.

PSName is a pointer to a PostScript® glyph name.

errCode is a pointer to the returned errorCode.

Description

This function converts a PostScript font name to a character code. This works for
Type 1 and CFF/Type 2 fonts only.

int FF_SetBitRange255(
T2K *t
boolean value)

Arguments

t is a pointer to the T2K object itself.

true sets the gray scale native range from the default (0 to 126) to 0 to 255.

false sets the gray scale native range back to the default of 0 to 126.

Description

Font Fusion returns anti-aliased text within a range of 0 to 126, which allows for
127 shades of gray. Some systems require 256 shades of gray. These systems can
now set the boolean value to false to return 256 shades of gray. It is faster to use
the gray scale native range of 0 to 126. This function is optional and can be called
any time before T2K_RenderGlyph.
138 Font Fusion Core API

Chapter 3
Sample Code

Macintosh

This is a Macintosh code example of linear text layout using kerning.

totalWidth = T2K_MeasureTextInX(scaler, string16, kern,
numChars);
for (i = 0; (charCode = string16[i]) != 0; i++) {
F16Dot16 xKern, yKern;

/* Create a character */
T2K_RenderGlyph(scaler, charCode, 0, 0,
BLACK_AND_WHITE_BITMAP, T2K_GRID_FIT | T2K_RETURN_OUTLINES
| T2K_SCAN_CONVERT, &errCode);
assert(errCode == 0);
T2K_TransformXFunits(scaler, kern[i], &xKern, &yKern);

bm->baseAddr = (char *)scaler->baseAddr;
bm->rowBytes = scaler->rowBytes;
bm->bounds.left = 0;
bm->bounds.top= 0;
bm->bounds.right= scaler->width;
bm->bounds.bottom= scaler->height;

MyDrawChar(graf, x + ((scaler-
>fLeft26Dot6+(xKern>>10))>>6), y - (scaler-
>fTop26Dot6+(yKern>>10)>>6), bm);
/* We keep x as 32.16 */
x16Dot16 += scaler->xLinearAdvanceWidth16Dot16 + xKern; x +=
x16Dot16>>16; x16Dot16 &= 0x0000ffff;
/* Free up memory */
T2K_PurgeMemory(scaler, 1, &errCode);
assert(errCode == 0);
}

Font Fusion Core API 139

Bitstream Font Fusion® 5.0a Reference Guide
T2K Scaler

This shows a “pseudo code” example for how to use the T2K scaler.

/* First configure T2K, please see "CONFIG.H" !!! */

tsiMemObject *mem = NULL;
InputStream *in = NULL;
sfntClass *font = NULL;
T2K *scaler = NULL;
int errCode;
T2K_TRANS_MATRIX trans;
T2K_AlgStyleDescriptor style;

/* Create a Memhandler object. Use ONE per font. */
mem= tsi_NewMemhandler(&errCode);
assert(errCode == 0);

/* Point data1 at the font data */
If (TYPE 1) {

if (PC Type 1) {
/* Only call for .pfb files and NOT for .pfa files. */
data1 = ExtractPureT1FromPCType1(data1, &size1, &errCode);
/* data1 is not allocated just munged by this call ! */

} else if (Mac Type 1) {
short refNum = OpenResFile(pascalName); /* Open the resource with

some Mac call */
data1 = (unsigned char *)ExtractPureT1FromMacPOSTResources(mem,

refNum, &size1);
CloseResFile(refNum); /* Close the resource file with some Mac call

*/
/* data1 IS allocated by the T2kMemory layer! */

}
}
/* Please make sure you use the right New_InputStream call depending on who

allocated data1,
 and depending on if the font is in ROM/RAM or on the disk/server etc. */
/* Create an InputStream object for the font data */
in = New_InputStream(mem, data1, size1, &errCode); /* if data allocated by

the T2kMemory layer */
assert(errCode == 0);

 **** OR ****
in = New_InputStream3(mem, data1, size1, &errCode); /* otherwise do this

if you allocated the data */
**** OR *****
/* Allows you to leave the font on the disk, or remote server for instance

(!) */
in = New_NonRamInputStream(mem, fpID, ReadFileDataFunc, length, &errCode

);

assert(errCode == 0);
/* Create an sfntClass object. (No algorithmic styling) */
140 Font Fusion Core API

Chapter 3
short fontType = FONT_TYPE_TT_OR_T2K; /* Or, set equal to FONT_TYPE_1 for
type 1, FONT_TYPE_2 for CFF fonts */

font = New_sfntClass(mem, fontType, in, NULL, &errCode);
**** OR ****
/* alternatively do this for formats that support multiple logical fonts

within one file */
font = FF_New_sfntClass(mem, fontType, logicalFontNumber, in, NULL,

NULL, &errCode);

/* Or if you wish to use algorithmic styling do this instead
 * T2K_AlgStyleDescriptor style;
 *
 * style.StyleFunc = tsi_SHAPET_BOLD_GLYPH;
 * style.StyleMetricsFunc=tsi_SHAPET_BOLD_METRICS;
 * style.params[0] = 5L << 14; (* 1.25 *)
 * font = New_sfntClass(mem, fontType, in, &style, &errCode);
 */
assert(errCode == 0);

/* Create a T2K font scaler object. */
scaler = NewT2K(font->mem, font, &errCode);
assert(errCode == 0);

/* 12 point */
trans.t00 = ONE16Dot16 * 12;
trans.t01 = 0;
trans.t10 = 0;
trans.t11 = ONE16Dot16 * 12;
/* Set the transformation */
T2K_NewTransformation(scaler, true, 72, 72, &trans, true, &errCode

);
assert(errCode == 0);
loop {

/* Create a character */
T2K_RenderGlyph(scaler, charCode, 0, 0, BLACK_AND_WHITE_BITMAP,

T2K_GRID_FIT | T2K_RETURN_OUTLINES | T2K_SCAN_CONVERT, &errCode);
assert(errCode == 0);
/* Now draw the char */
/* Free up memory */
T2K_PurgeMemory(scaler, 1, &errCode);
assert(errCode == 0);

}
/* Destroy the T2K font scaler object. */
DeleteT2K(scaler, &errCode);
assert(errCode == 0);

/* Destroy the sfntClass object. */
FF_Delete_sfntClass(font, &errCode);
assert(errCode == 0);

/* Destroy the InputStream object. */
Delete_InputStream(in, &errCode);
assert(errCode == 0);

/* Destroy the Memhandler object. */
tsi_DeleteMemhandler(mem);
Font Fusion Core API 141

Bitstream Font Fusion® 5.0a Reference Guide
142 Font Fusion Core API

4F o n t M a n a g e r
A P I 1

Getting Started with the Font Manager

Functions for Creating, Configuring, and Deleting the Font
Manager

Function for Installing Fonts and Getting Font Information

Functions for Creating and Using Fonts

Sample Code

Bitstream Font Fusion® 5.0a Reference Guide
Getting Started with the Font
Manager

This section answers the following questions:

Why use the Font Manager?
What files should I look at first?
How do I use the Font Manager?
Why do Font Fusion, the Font Manager, and the Cache Manager have a
RenderGlyph function?
How does the Cache Manager know if the Font Manager should render a
glyph? What's the configuration requirement for me to make these work
together?
How many fonts can I handle at once?
Are there any other configuration parameters for the Font Manager?
Why does the FF_FM_AddTypefaceStream() function take two stream
arguments?
Why does FF_FM_CreateFont() include a flushCache parameter?
Do you have a coding example?

Why Use the Font Manager?

The Font Manager hides some complexities of using the Font Fusion Core. So it
can make your life a bit easier. But mostly the Font Manager allows you to have
more than one outline font “registered” and ready to use with the Font Fusion
Core. It saves you from building up your own code to handle multiple fonts.

Your application can get information about each font input stream that Font
Fusion “installs,” which is also convenient.

But one of the most important reasons for using the Font Manager is that across
all font technologies, the Font Manager can dynamically merge font fragments of
the same font. This supports dynamic downloading of font fragments of large
character set fonts, such as Chinese, Japanese, or Korean (CJK) fonts.

It can also support adding characters to a font by adding small font fragments
with the new characters. Characters in newer fragments override the same
144 Font Manager API

Chapter 4
characters in earlier fragments. This means that, if your system embeds fonts in
ROM, you can load a new font fragment along with the old font at run time.

What Files Should I Look at First?

First, you need to familiarize yourself with t2k.h. This file contains
documentation, a coding example, and the actual Font Fusion API.

Second, you need to look at config.h. This file is the only file you normally
need to edit. The file configures Font Fusion for your platform, it enables or
disables optional features, and it allows you to build debuggable or non-
debuggable versions. The file itself contains more information. Turn off features
you do not need in order to minimize the size of the Font Fusion Core.

Third, you need to look at ff_fm.h. This file describes the API of the Font
Fusion Font Manager.

How Do I Use the Font Manager?

Follow the steps below to use the Font Manager in your application:

1 Create the Font Manager class.

2 Configure the Font Manager at run-time, setting the platform ID, specific ID,
language ID, name ID (which all affect only font names you'll receive in font
properties or in font enumeration), and the horizontal and vertical
resolution.

NOTE:These configurations are optional, since the Font Manager has viable
usable values for North American Latin fonts and presumes a 72 dpi by 72
dpi resolution.

3 You can then add font streams to the Font Manager at any time. Refer to the
t2k.h file, or the “InputStream Functions: Overview” on page 53 for details
on creating input streams.

4 After adding streams, you can call the font enumeration function,
FF_FM_EnumTypefaces(), to find out what fonts are available and how
many there are.

5 From the available fonts, you create strikes. When you create a strike, you are
given a token representing the strike, which you use to select it.
Font Manager API 145

Bitstream Font Fusion® 5.0a Reference Guide
6 Once you select a strike, you can render characters from it.

Font Fusion places all output in the T2K class just as if you were using the Font
Fusion Core. See t2k.h for more information on using the Font Fusion Core.

With the Font Manager, the details of creating a T2K class and an sfntClass are
managed by the Font Manager, making your life simpler. However, you still need
to create input streams.

Why Do Font Fusion, the Font
Manager, and the Cache Manager
Have a RenderGlyph() Function?

We designed them that way so they could be independent of each other and work
together.

The real RenderGlyph work is always done in the Font Fusion Core. If you are
using the Cache Manager, FF_CM_RenderGlyph() first checks the cache for the
glyph or calls another module to render the glyph and store it in the cache. It
uses either the Font Manager RenderGlyph() function or it calls the Font
Fusion Core.

The Font Manager RenderGlyph() function looks for the requested glyph from
among the font fragments of the font, and then calls the T2K_RenderGlyph()
function.

How Does the Cache Manager Know
if the Font Manager Should Render a
Glyph? What's the Configuration
Requirement for Me to Make These
Work Together?

There is no configuration requirement! You just build the Font or Cache Manager
and use each at run time.
146 Font Manager API

Chapter 4
If you “register” a font with the Font Manager, when you create and select a
strike, the Font Manager stamps or marks itself in the T2K class to let the Cache
Manager know it is present.

If you are using the Cache Manager, the Cache Manager will respect this stamp,
which consists of enough information for the Cache Manager to use the Font
Manager’s API.

How Many Fonts Can I Handle at
Once?

We designed the Font Manager to handle up to 64K InputStreams, 64K physical
fonts, 64K logical fonts, and 128 “Strikes.”

Input streams are similar to (and often are) font files. Within some of these
streams (such as TrueType Collections and TrueDoc PFRs), there can be more
than one physical font.

Logical fonts are merged “super” fonts made up of one or more physical font
fragments. Physical and logical fonts are only concerned with outline font
resources.

A “strike” is an instance of an outline resource that Font Fusion scales and
transforms to a particular size, aspect ratio, italic angle, etc. The default limit on
the number of strikes is 128, but you can override the this limit by redefining
FF_FM_MAX_DYNAMIC_FONTS.

Are There Any Other Configuration
Parameters for the Font Manager?

No.

Why Does
FF_FM_AddTypefaceStream() Take
Font Manager API 147

Bitstream Font Fusion® 5.0a Reference Guide
Two Stream Arguments?

Some font technologies have metrics information in a second file. For example,
Adobe® ships.afm files containing font metrics, including kerning information.
Use the second stream argument for these auxiliary metrics files or streams. For
other technologies or if you are not using kerning, pass NULL for the second
stream parameter.

Why Does FF_FM_CreateFont()
Include a flushCache Parameter?

This parameter is there to signal applications using the Cache Manager that the
cache needs to be flushed. There is only one reason this would ever happen:
when the Font Manager re-uses a font code from a previously deleted strike, it
signals the cache to flush to purge glyphs that may be stranded in the cache from
the deleted font.

If you are not using a Cache Manager, you can always ignore this parameter's
value.

Is There a Coding Example?

Yes. There is a coding example at the end of this chapter.
148 Font Manager API

Chapter 4
Functions for Creating,
Configuring, and Deleting the
Font Manager

FF_FM_New ()
FF_FM_AddTypefaceStream ()
FF_FM_SetPlatformID ()
FF_FM_SetPlatformSpecificID ()
FF_FM_SetLanguageID ()
FF_FM_SetNameID ()
FF_FM_Delete ()

FF_FM_Class *FF_FM_New(
int *errCode)

Arguments

errCode is a pointer to the returned error code.

Description

FF_FM_New() creates a new instance of the Font Fusion Font Manager.

It returns a context pointer, which is NULL on failure. The errCode parameter is
clear on success.

Possible error codes:

T2K_ERR_MEM_MALLOC_FAILED
Font Manager API 149

Bitstream Font Fusion® 5.0a Reference Guide
void FF_FM_AddTypefaceStream(
FF_FM_Class *pFM,
InputStream StreamA,
InputStream StreamB,
int *errCode)

Arguments

pFM is a pointer to the current Font Manager context.

StreamA is the font data stream.

StreamB is a stream for additional font information. Some font technologies
have metrics information in a second file. For example, Adobe ships .afm files
containing font metrics, including kerning information. Use the second stream
argument for these auxiliary metrics files or streams. For other technologies or if
you are not using kerning, pass NULL for the second stream parameter.

errCode is a pointer to the returned error code.

Description

FF_FM_AddTypefaceStream() installs an outline font-resource stream to the
Font Manager context. The errCode parameter returns 0 on success, or an error
code on failure.

Possible error codes:

T2K_ERR_MEM_MALLOC_FAILED
T2K_ERR_MEM_REALLOC_FAILED

void FF_FM_SetPlatformID(
FF_FM_Class * pFM,
uint16 platformID)

Arguments

pFM is a pointer to the current Font Manager context.

platformID is the platform ID for accessing character map tables. It is the same
as what Microsoft’s TrueType documentation specifies.
150 Font Manager API

Chapter 4
Description

FF_FM_SetPlatformID() sets the platform ID for accessing cmap (character
map) tables in TrueType and native T2K fonts. The default platform ID is 3
(Microsoft). Call this function to change to another platform ID.

In the Font Manager, this affects the settings stored in the T2K scaler created in
FF_FM_SelectFont().

For other font technologies, the Font Manager ignores this setting.

void FF_FM_SetPlatformSpecificID(
FF_FM_Class * pFM,
uint16 platformSpecificID)

Arguments

pFM is a pointer to the current Font Manager context.

platformSpecificID is the platform-specific ID for accessing character map
tables. It is the same as what Microsoft’s TrueType documentation specifies.

Description

FF_FM_SetPlatformSpecificID() sets the platform-specific ID for
accessing cmap tables in TrueType and native T2K fonts. The default platform-
specific ID is 1 (Unicode). Call this function to change to another platform-
specific ID.

In the Font Manager, this affects the settings stored in the T2K scaler created in
FF_FM_SelectFont().

For other font technologies, the Font Manager ignores this setting.
Font Manager API 151

Bitstream Font Fusion® 5.0a Reference Guide
void FF_FM_SetLanguageID(
FF_FM_Class * pFM,
uint16 languageID)

Arguments

pFM is a pointer to the current Font Manager context.

languageID is the language ID for accessing name tables. It is the same as what
Microsoft’s TrueType documentation specifies.

Description

FF_FM_SetLanguageID() sets the language ID for accessing name tables in
TrueType and native T2K fonts. The default language ID is 0x0409 (Microsoft,
American English). Call this function to change to another language ID for name
tables.

In the Font Manager, this affects the name strings that the
enumTypefaceCallBack argument of the FF_FM_EnumTypefaces()
function returns. Call this function as needed before
FF_FM_AddTypefaceStream().

For other font technologies, Font Fusion ignores this setting.

void FF_FM_SetNameID(
FF_FM_Class * pFM,
uint16 nameID)

Arguments

pFM is a pointer to the current Font Manager context.

nameID is the name ID for accessing name tables. It is the same as what
Microsoft’s TrueType documentation specifies.

Description

FF_FM_SetNameID() sets the name ID for accessing name tables in TrueType
and native T2K fonts. The default name ID is 4 (full font name). Call this
function to change to another name ID.
152 Font Manager API

Chapter 4
In the Font Manager, this affects the name strings that the
enumTypefaceCallBack argument of the FF_FM_EnumTypefaces()
function returns. Call this function as needed before
FF_FM_AddTypefaceStream().

For other font technologies, Font Fusion ignores this setting.

void FF_FM_Delete(
FF_FM_Class * pFM,
int *errCode)

Arguments

pFM is a pointer to the current Font Manager context.

errCode is a pointer to the returned error code.

Description

FF_FM_Delete() deletes the Font Fusion Font Manager context and cleans up
memory.
Font Manager API 153

Bitstream Font Fusion® 5.0a Reference Guide
Function for Installing Fonts
and Getting Font Information

FF_FM_EnumTypefaces ()

enumTypefaceCallback() Function

The enumTypefaceCallback() function is a callback function that you write.
The FF_FM_EnumTypefaces() API function calls the callback once for each
font installed in the Font Manager context.

Regarding the faceName parameters of the callback, one or the other of these
parameters is not NULL. The non-NULL parameter points to the name of the font.
The faceName8 parameter points to a null-terminated, eight-bit (one-byte)
string. The faceName16 parameter points to a null-terminated, sixteen-bit
(two-byte) string.

int FF_FM_EnumTypefaces(
FF_FM_Class * pFM,
int enumTypefaceCallBack(uint8 *faceName8,
uint16 *faceName16))

Arguments

pFM is a pointer to the current Font Manager context.

enumTypefaceCallBack is a function you write that the Font Manager calls for
each logical font in the internal list order that the Font Manager keeps. It allows
your application to find out how many fonts are actually available and what their
names are.

Description

FF_FM_EnumTypefaces() enumerates the available logical fonts that the Font
Manager finds among the outline font resources. At least two of the supported
type technologies allow multiple logical fonts in each outline resource: TrueType
Collections and TrueDoc PFRs.
154 Font Manager API

Chapter 4
Once you install the outline resources, your application can use this function to
determine what logical fonts are available.

This function returns whatever the enumTypefaceCallBack() function
returns the last time FF_FM_EnumTypefaces() calls it.

The Font Manager calls the enumTypefaceCallBack() function once for each
logical font in the internal list order that the Font Manager keeps, or until the
enumTypefaceCallBack() function returns a non-zero value.
Font Manager API 155

Bitstream Font Fusion® 5.0a Reference Guide
Functions for Creating and
Using Fonts

FF_FM_CreateFont ()
FF_FM_SetXYResolution ()
FF_FM_SelectFont ()
FF_FM_DeleteFont ()
FF_FM_RenderGlyph ()

uint16 FF_FM_CreateFont(
FF_FM_Class * pFM,
uint16 index,
boolean *flushCache,
T2K_TRANS_MATRIX *trans,
T2K_AlgStyleDescriptor *styling,
int *errCode)

Arguments

pFM is a pointer to the current Font Manager context.

index is the logical font index of the installed font. This means that when you
call FF_FM_EnumTypefaces(), the first time it calls the callback function it
gives you information about logical font 0, the second time about logical font 1,
and so on. So once you have enumerated the fonts, you will know which index
you want.

flushCache is a pointer to a TRUE or FALSE setting. It is TRUE if creating the
font requires Font Fusion to flush the cache. In this event, existing valid tokens
of previously created fonts remain valid. The cache flush is rarely needed to clean
out stranded glyphs from fonts that your application already deleted. If you are
not using a Cache Manager, you can always ignore this parameter’s value.

trans is a pointer to the current transformation matrix. Basically, you specify:

the x and y resolutions
a 2*2 transformation matrix (including the point size)
a true or false setting to enable or disable embedded bitmaps
156 Font Manager API

Chapter 4
After you are done with the output data, you call FF_FM_DeleteFont() to
delete the font you created with this function.

styling is a pointer to a function that modifies the outlines algorithmically.
This is normally == NULL. The compile-time option ALGORITHMIC_STYLES
enables algorithmic styling. If you enable ALGORITHMIC_STYLES, you can set it
equal to an algorithmic style descriptor. Here is an example using the algorithmic
emboldening that Font Fusion provides.

style.StyleFunc= tsi_SHAPET_BOLD_GLYPH;
style.StyleMetricsFunc=tsi_SHAPET_BOLD_METRICS;
style.params[0] = 5L << 14;
sfnt0 = FF_New_sfntClass(mem, fontType, 0, in, NULL, &style,
&errCode);

You can also write your own outline-based style modifications and use them
instead of the algorithmic emboldening that Font Fusion provides. Just model
them after the code for algorithmic emboldening in shapet.c.

errCode is a pointer to the returned error code.

Description

FF_FM_CreateFont() creates a font instance (an outline resource plus a
transformation) and returns a font code for your application to use to select a
font. Note, however, that this functions does not select the font.

This function also allows you to set the transformation matrix and x and y
resolutions when you render characters and strings. It informs the T2K object
about the current transformation and size.

The font code is valid if the errCode parameter is not set.

This function also sets flushCache to TRUE if creating the font requires Font
Fusion to flush the cache. In this event, existing valid tokens of previously
created fonts remain valid. The cache flush is rarely needed to clean out stranded
glyphs from fonts that your application already deleted.

Possible error returns (in errCode):

FF_FM_ERR_FONT_OFLO_ERR
FF_FM_ERR_BAD_INDEX
T2K_ERR_MEM_MALLOC_FAILED
Font Manager API 157

Bitstream Font Fusion® 5.0a Reference Guide
How Do I Calculate Character Sizes

Character size is best expressed by the following formula:

Size = # of lines = point size/72 Points Per Inch (PPI) * resolution.

For example,

Size = 100 lines = 24pt/72PPI * 300 Dots Per Inch (DPI).

Examples of Transformations

In the following examples, size is a fractional number in 16.16 format.

Typically, you have the following:

trans.t00 = size;
trans.t01 = 0;
trans.t10 = 0;
trans.t11 = size;

To condense the text in the x-direction to 80 percent, use the following. We do
not promote condensing text, since there are condensed fonts designed that way,
but the following example shows you how to do it.

trans.t00 = util_FixMul(size, 8*0x10000/10);
trans.t01 = 0;
trans.t10 = 0;
trans.t11 = size;

To stretch the text in the y-direction to 125 percent, use the following. We do not
promote extending text, but the following example shows you how to do it.

trans.t00 = size;
trans.t01 = 0;
trans.t10 = 0;
trans.t11 = util_FixMul(size, 125*0x10000/100);

To rotate the text at an angle, alpha-measured clockwise from the x-axis, use the
following. If the angle is in the first quadrant, it is negative.

trans.t00 = util_FixMul(size , cosvalue);
trans.t01 = util_FixMul(size , sinvalue);
trans.t10 = util_FixMul(size , -sinvalue);
trans.t11 = util_FixMul(size , cosvalue);

In the example above, the cosvalue and sinvalue above are cos(angle) and
sin(angle) in 16.16 format.
158 Font Manager API

Chapter 4
void * FF_FM_SetXYResolution(
FF_FM_Class * pFM,
long xRes,
long yRes)

Arguments

pFM is a pointer to the current Font Manager context.

xRes is the horizontal resolution for the output display in dots-per-inch (dpi).
The default is 72 dpi.

yRes is the vertical resolution in dots-per-inch (dpi). The default is 72 dpi.

Description

FF_FM_SetXYResolution() sets the internal, default dots-per-inch (dpi) for
the display resolution through the Font Manager.

The internal default is a horizontal resolution of 72 dpi, and a vertical resolution
of 72 dpi. Using this function, your application can change the output resolution
specification before calling FF_FM_SelectFont().

T2K * FF_FM_SelectFont(
FF_FM_Class * pFM,
uint16 fontCode,
int *errCode)

Arguments

pFM is a pointer to the current Font Manager context.

fontCode is the font code for a font instance you previously created with a call
to FF_FM_CreateFont().

errCode is a pointer to the returned error code.
Font Manager API 159

Bitstream Font Fusion® 5.0a Reference Guide
Description

FF_FM_SelectFont() selects a previously created font instance. The selected
font is now active in the T2K scaler object and ready for Font Fusion to render
glyphs.

The errCode parameter is set on failure, indicating that the T2K scaler object
that this function returned is invalid. Possible error code returns (in errCode):

T2K_ERR_MEM_IS_NULL
FF_FM_ERR_BAD_FONTCODE

void FF_FM_DeleteFont(
FF_FM_Class * pFM,
uint16 fontCode,
int *errCode)

Arguments

pFM is a pointer to the current Font Manager context.

fontCode is the font code for a font instance you previously created with a call
to FF_FM_CreateFont().

errCode is a pointer to the returned error code.

Description

FF_FM_DeleteFont() deletes a previously created font instance. The font
instance represented by fontCode becomes invalid and images from it may be
stranded in the cache, requiring you to flush the cache.

This function returns nothing. It sets errCode to 0 on success, or it returns:

FF_FM_ERR_FONT_CODE_ERR
160 Font Manager API

Chapter 4
void FF_FM_RenderGlyph(
FF_FM_Class * pFM,
uint16 fontCode,
T2K **pScaler,
long code,
int8 xFracPenDelta,
int8 yFracPenDelta,
uint8 greyScaleLevel,
uint16 cmd,
int *errCode)

Arguments

pFM is a pointer to the current Font Manager context.

fontCode is the font code for a font instance you previously created with a call
to FF_FM_CreateFont().

pScaler is a pointer to a pointer to the current T2K scaler object.

xFracPenDelta and yFracPenDelta are normally set to zero. You can use
them with non-zero values if you are also using fractional character positioning.

greyScaleLevel describes the level of anti-aliasing you want to apply. For
more information, see the section “Bits for the greyScaleLevel argument”
described in the T2K_RenderGlyph() function in Chapter 3.

cmd describes to Font Fusion what to do with various bitflags. For more
information, see the section “Bits for the cmd argument” described in the
T2K_RenderGlyph() function in Chapter 3.

errCode is a pointer to the returned error code.

Description

FF_FM_RenderGlyph() renders a glyph from a font instance active in the T2K
scaler object.

It uses the fontCode parameter to reference internal FF_FM data structures to
walk through “merged” font fragments until Font Fusion successfully renders the
glyph or depletes the fragment list. This function may alter what pScaler points
to as it is making each glyph. Possible error codes include error set by setjmp().
Refer to the T2K_RenderGlyph() function in Chapter 3.
Font Manager API 161

Bitstream Font Fusion® 5.0a Reference Guide
Sample Code
The following is a simple example program using the Font Manager and the Font
Fusion Core.

/* First configure T2K, please see "CONFIG.H" !!! */
/* compile and link with

Font Fusion Core sources,
Font Manager sources
(and optionally Cache Manager sources)
and standard 'C' libraries

*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "t2k.h"
#include "cachemgr.h"
#include "ff_fm.h"

#define ALL_BLACK_AND_WHITE1/* change to 0 for greyscale */
#define CACHE_SIZE(32*1024)
#define USE_CACHE0/* change to 1 for testing use with Cache Manager */

/* Function Prototypes */
int main(int argc, char* argv[]);
static int enumFontCB(uint16 listIndex, uint8 *faceName8, uint16 *faceName16);
static void DoPrintFontProperties(T2K *aScaler);
static void print16Dot16(F16Dot16 aCode);
static void PrintChar(T2K *scaler);

/* PROGRAM CODE: */
/*
 * Main Program: Example of using the Font Fusion Font Manager (and Cache
Manager)
 */
int main(int argc, char* argv[])
{
/* LOCALS: */
int errCode = 0;
FF_FM_Class *pFMGlobals;
#if USE_CACHE
FF_CM_Class *theCache;
uint8 filterTag = 0;/* anywhere from 0...255 */
#endif
char flushCache;
uint16 fontCode, faceIndex;
T2K_TRANS_MATRIX trans;
T2K_AlgStyleDescriptor styleDesc, *stylePtr;
T2K *aScaler;
int testSize, jj;
long charCode;
162 Font Manager API

Chapter 4
#if ALL_BLACK_AND_WHITE
uint8 greyScaleLevel = BLACK_AND_WHITE_BITMAP;
uint16 cmd = T2K_NAT_GRID_FIT | T2K_GRID_FIT | T2K_SCAN_CONVERT;
#else
uint8 greyScaleLevel = GREY_SCALE_BITMAP_HIGH_QUALITY;
uint16 cmd = T2K_TV_MODE | T2K_SCAN_CONVERT;
#endif
tsiMemObject *mem = NULL;
char *fName = "TT0003M_.TTF";
FILE *fpID;
unsigned long length, count;
unsigned char *data = NULL;
InputStream *InputStreamA = NULL, *InputStreamB = NULL;
char success = false;/* we will set to true if we create an input stream OK */

/* CODE BEGINS: */
UNUSED (argc);
UNUSED (argv);
printf("Hello World from Font Fusion Font Manager Demo Program!\n");

/* Create a Memhandler object. Use ONE for up to 507 (?) streams. */
mem= tsi_NewMemhandler(&errCode);
assert(errCode == 0);
/* load a disk file into memory and make an input stream:*/
if (mem != NULL && !errCode)
{

/* this is always deeply nested, eh? */
fpID = fopen(fName, "rb");
assert(fpID != NULL);
if (fpID)
{

errCode = fseek(fpID, 0L, SEEK_END);
assert(errCode == 0);
if (!errCode)
{

length = (unsigned long)ftell(fpID);
assert(ferror(fpID) == 0);
if (ferror(fpID) == 0)
{

errCode = fseek(fpID, 0L, SEEK_SET); /* rewind */
assert(errCode == 0);
if (!errCode)
{

data = (unsigned char *)CLIENT_MALLOC(sizeof(char) * length);
assert(data != NULL);
if (data)
{

count = fread(data, sizeof(char), length, fpID);
assert(ferror(fpID) == 0 && count == length);
if (ferror(fpID) == 0 && count == length)
{

errCode = fclose(fpID);
assert(errCode == 0);
Font Manager API 163

Bitstream Font Fusion® 5.0a Reference Guide
/* Please make sure you use the right New_InputStream call
depending on who allocated data1,

 and depending on if the font is in ROM/RAM or on the disk/
server etc. */

/* Create an InputStream object for the font data */
InputStreamA = New_InputStream3(mem, data, length, &errCode

);
assert(errCode == 0);
success = true;

}
else printf("Failed fread() of file!\n");

}
else printf("Failed allocating data buffer size = %ld, for

file!\n", length);
}
else printf("Failed rewinding file with fseek()!\n");

}
else printf("Failed getting size of file with ftell()!\n");

}
else printf("Failed fseek() to end of file!\n");

}
else printf("Failed opening file: %s with fopen()!\n", fName);

}
else printf("Failed getting new mem handler with tsi_NewMemhandler()!\n");
InputStreamB = NULL;

if (success)
{

#if USE_CACHE
/* Create a new Cache Manager to play around with. */
theCache = FF_CM_New(CACHE_SIZE, &errCode);
assert(errCode == 0);
if (theCache)
{

#endif
pFMGlobals = FF_FM_New(&errCode);
if (pFMGlobals)
{

/* configure the way we like it: */
FF_FM_SetPlatformID(pFMGlobals,3);
FF_FM_SetPlatformSpecificID(pFMGlobals,1);
FF_FM_SetLanguageID(pFMGlobals,0x0409);
FF_FM_SetNameID(pFMGlobals,4);
FF_FM_SetXYResolution(pFMGlobals, 72, 72);
/* Add an input stream pack to the Font Manager */
FF_FM_AddTypefaceStream(pFMGlobals,

InputStreamA,
InputStreamB,
&errCode);

assert (errCode == 0);

/* TESTING: FF_FM_EnumTypefaces() */
FF_FM_EnumTypefaces (pFMGlobals, enumFontCB);
164 Font Manager API

Chapter 4
/* TESTING: FF_FM_CreateFont() */
stylePtr = NULL; /* we are not using the styleDesc variable at all */

#ifdef ALGORITHMIC_STYLES
styleDesc.StyleFunc= tsi_SHAPET_BOLD_GLYPH;
styleDesc.StyleMetricsFunc=tsi_SHAPET_BOLD_METRICS;

#else
styleDesc.StyleFunc= NULL;
styleDesc.StyleMetricsFunc=NULL;

#endif
styleDesc.params[0] = 5L << 14;

testSize = 24;/* 24 lines per em */
faceIndex = 0;
trans.t00 = ONE16Dot16 * testSize;
trans.t01 = 0;
trans.t10 = 0;
trans.t11 = ONE16Dot16 * testSize;
fontCode = FF_FM_CreateFont(

pFMGlobals,
faceIndex,
&flushCache,
(T2K_TRANS_MATRIX *)&trans,
stylePtr,
&errCode);

assert(errCode == 0);
#if USE_CACHE

if (flushCache) /* will not happen with just one font created */
FF_CM_Flush(theCache, &errCode);

assert(errCode == 0);
filterTag = 0;
FF_CM_SetFilter(theCache,

filterTag,
NULL,
NULL);/* all characters from now on will be coded with this

tag */
#endif

aScaler = FF_FM_SelectFont(pFMGlobals,
fontCode,
&errCode);

if (aScaler && !errCode)
{

/* print font properties */
T2K_SetNameString(aScaler, 0x409, 4); /* see if we can get a font

name, too */
DoPrintFontProperties(aScaler);

printf("'A - Z' test\n");
charCode = 'A';
for (jj = 0; jj < 26; jj++, charCode++)
{

printf("\n***Here comes the %c ****\n", (char)charCode);
#if USE_CACHE

FF_CM_RenderGlyph(theCache,fontCode,
Font Manager API 165

Bitstream Font Fusion® 5.0a Reference Guide
&aScaler, charCode,
0, 0,
greyScaleLevel, cmd, &errCode);

#else
FF_FM_RenderGlyph(pFMGlobals,fontCode,

&aScaler, charCode,
0, 0,
greyScaleLevel, cmd, &errCode);

#endif
assert(errCode == 0);
/* Now draw the char */
PrintChar(aScaler);
/* Free up memory */
T2K_PurgeMemory(aScaler, 1, &errCode);
assert(errCode == 0);

#if USE_CACHE
/* render same char, expect to get from cache: */
printf("\n***Here comes the %c ****\n", (char)charCode);
FF_CM_RenderGlyph(theCache,fontCode,

&aScaler, charCode,
0, 0,
greyScaleLevel, cmd, &errCode);

assert(errCode == 0);
/* Now draw the char */
PrintChar(aScaler);
/* Free up memory */
T2K_PurgeMemory(aScaler, 1,

&errCode);
assert(errCode == 0);

#endif
}

}

FF_FM_Delete(pFMGlobals, &errCode);
assert (errCode == 0);

}
else printf("Unable to initialize the Font Manager, errCode = %d!\n",

errCode);
#if USE_CACHE

FF_CM_Delete(theCache, &errCode);
assert (errCode == 0);

}
else printf("Unable to initialize the Cache Manager, errCode = %d!\n",

errCode);
#endif

} /* if success */
else

errCode = 1;/* InputStream initialization failed */

/* clean up */
if (InputStreamA)
{

Delete_InputStream(InputStreamA, &errCode);
assert (errCode == 0);
166 Font Manager API

Chapter 4
}

if (data)
CLIENT_FREE(data);

if (mem)/* Destroy the Memhandler object. */
tsi_DeleteMemhandler(mem);

return errCode;
}

/*
 * Enumerate Fonts Callback Function
 */
static int enumFontCB(uint16 listIndex, uint8 *faceName8, uint16 *faceName16)
{

int retCode = 0;
printf("Logical font index %d ", (int)listIndex);
if (faceName8)

printf("%s\n", faceName8);
else if (faceName16)
{

char s[64];
int ii = 0;
while (faceName16[ii])

s[ii] = (char)(faceName16[ii++]); /* dumb: truncate 16 bit chars to 8 bit
chars */

s[ii] = 0;
printf("%s\n", s);

}
else

printf("\n");
return retCode;

}

/*
 * Print/Display Character Function
 */
static void PrintChar(T2K *scaler)
{
int y, x, k, w, h;
char c;

w = scaler->width;
assert(w <= scaler->rowBytes * 8);
h = scaler->height;

/* printf("w = %d, h = %d\n", w, h); */
k = 0;
for (y = 0; y < h; y++)
{

for (x = 0; x < w; x++)
{

if (scaler->rowBytes == w)
Font Manager API 167

Bitstream Font Fusion® 5.0a Reference Guide
{ /* greyscale, byte walk, divide values by 12, map to digits and clamp
> 9 to '@' */

c =
(char)((scaler->baseAddr[k + x]) ?

scaler->baseAddr[k + x]/12 + '0' : '.');
if (c > '9')

c = '@';
}
else/* BLACK_AND_WHITE, fancy bit walk, off = '.' and on = '@' */

c =
(char)((scaler->baseAddr[k + (x>>3)] & (0x80 >> (x&7))) ?

'@' : '.');
printf("%c", c);

}
printf("\n");
k += scaler->rowBytes;

}
if (scaler->embeddedBitmapWasUsed)

printf("Bitmap was embedded BITMAP!\n");
else

printf("Bitmap generated from OUTLINE.\n");
}

/* utility functions */

/*
 * Print 16.16 Function
 */
static void print16Dot16(F16Dot16 aCode)
{
int hiWord, loWord;

hiWord = (aCode & 0xffff0000) >> 16;
loWord = aCode & 0x0000ffff;
printf("0x%x.", hiWord);
printf("%4x\n", loWord);

}

/*
 * Print Font Properties Function
 */
static void DoPrintFontProperties(T2K *aScaler)
{
char s[64];
int ii;

printf("Font Properties:\n");
if (aScaler->nameString8)

printf("Font name: %s\n", aScaler->nameString8);
if (aScaler->nameString16)

{
for (ii = 0; aScaler->nameString16[ii]; ii++)

s[ii] = (char)aScaler->nameString16[ii];
s[ii] = 0;
printf("Font name: %s\n", s);
}

168 Font Manager API

Chapter 4
printf("# logical fonts inside: %d\n", (int)aScaler->numberOfLogicalFonts);
if (aScaler->horizontalFontMetricsAreValid)
{

/*** Begin font wide HORIZONTAL Metrics data */
printf("xAscender = ");
print16Dot16(aScaler->xAscender);
printf("yAscender = ");
print16Dot16(aScaler->yAscender);

printf("xDescender = ");
print16Dot16(aScaler->xDescender);
printf("yDescender = ");
print16Dot16(aScaler->yDescender);

printf("xLineGap = ");
print16Dot16(aScaler->xLineGap);
printf("yLineGap = ");
print16Dot16(aScaler->yLineGap);

printf("xMaxLinearAdvanceWidth = ");
print16Dot16(aScaler->xMaxLinearAdvanceWidth);
printf("yMaxLinearAdvanceWidth = ");
print16Dot16(aScaler->yMaxLinearAdvanceWidth);

printf("caretDx = ");
print16Dot16(aScaler->caretDx);
printf("caretDy = ");
print16Dot16(aScaler->caretDy);

printf("xUnderlinePosition = ");
print16Dot16(aScaler->xUnderlinePosition);
printf("yUnderlinePosition = ");
print16Dot16(aScaler->yUnderlinePosition);

printf("xUnderlineThickness = ");
print16Dot16(aScaler->xUnderlineThickness);
printf("yUnderlineThickness = ");
print16Dot16(aScaler->yUnderlineThickness);
/*** End font wide HORIZONTAL Metrics data */

}

if (aScaler->verticalFontMetricsAreValid)
{

/*** Begin font wide VERTICAL Metrics data */
printf("vert_xAscender = ");
print16Dot16(aScaler->vert_xAscender);
printf("vert_yAscender = ");
print16Dot16(aScaler->vert_yAscender);

printf("vert_xDescender = ");
print16Dot16(aScaler->vert_xDescender);
printf("vert_yDescender = ");
print16Dot16(aScaler->vert_yDescender);
Font Manager API 169

Bitstream Font Fusion® 5.0a Reference Guide
printf("vert_xLineGap = ");
print16Dot16(aScaler->vert_xLineGap);
printf("vert_yLineGap = ");
print16Dot16(aScaler->vert_yLineGap);

printf("vert_xMaxLinearAdvanceWidth = ");
print16Dot16(aScaler->vert_xMaxLinearAdvanceWidth);
printf("vert_yMaxLinearAdvanceWidth = ");
print16Dot16(aScaler->vert_yMaxLinearAdvanceWidth);

printf("vert_caretDx = ");
print16Dot16(aScaler->vert_caretDx);
printf("vert_caretDy = ");
print16Dot16(aScaler->vert_caretDy);

}
}

170 Font Manager API

5C a c h e M a n a g e r
A P I 1

Getting Started with the Cache Manager

Functions for Creating and Deleting the Cache Manager

Functions for Working with the Cache Manager

Sample Code

Bitstream Font Fusion® 5.0a Reference Guide
Getting Started with the
Cache Manager

This section discusses the following topics:

Overview of the Cache Manager
If you want to write your own Cache Manager
Why do Font Fusion, the Font Manager, and the Cache Manager have a
RenderGlyph()function?

Overview of the Cache Manager

The Cache Manager allows your application to make glyphs (bitmap character
images) and put them into a cache. It is very simple and straightforward to use.
The functions for creating and deleting the Cache Manager allow you to turn on
the cache, allocate memory for it, use it, and delete it when you are finished with
it.

The functions for working with the Cache Manager allow you to render glyphs
into it, empty it, and resize it. In addition, you can set filter parameters if you
want to apply special effects to characters, for example, drop shadows, cross-
hatch fills, and others. See “Using Filters” on page 89 for details.

Enable specific compile-time options to enhance the capabilities of the cache, as
described below.

Turn on ENABLE_CACHE_RESIZE compile-time option to enable dynamic
resizing of the cache, then use the FF_CM_Class
*FF_CM_SetCacheSize() function to set the size.
Turn on the ENABLE_CACHE_COMPRESSION compile-time option to
compress and decompress the cache. By default, this is done using run-
length encoding, but you can specify different compression and
decompression algorithms to use by registering them with the
FF_CM_SetCompDecomp() function.
Turn on additional filter functions using the ENABLE_UNDERLINEFILTER
and ENABLE_MULTIPLE_FILTERS compile-time options.
Turn on the ENABLE_COMMON_DEFGLYPH compile-time option to optimize
the size of the cache by storing the default missing glyph once instead of for
every character that needs it.
172 Cache Manager API

Chapter 5
If You Want to Write Your Own Cache
Manager

If you want to write your own cache mechanism, please contact Bitstream for
technical support: 617-497-6222. Bitstream has made it very easy for you to
integrate cache mechanisms to Font Fusion.

Why Do Font Fusion, the Font Manager, and
the Cache Manager Have a RenderGlyph()
Function?

We designed these functions so they could be independent of each other and
work together.

The real RenderGlyph work is always done in the Font Fusion Core. If you are
using the Cache Manager, FF_CM_RenderGlyph() first checks the cache for the
glyph or calls another module to render the glyph and store it in the cache. It
uses either the Font Manager RenderGlyph function or it calls the Font Fusion
Core.

The Font Manager RenderGlyph function, FF_FM_RenderGlyph(), looks for
the requested glyph from among the font fragments of the font, and then calls
the T2K_RenderGlyph() function.

NOTE: Use the FF_CM_GlyphInCache() function if you only want to check the
cache for the glyph.
Cache Manager API 173

Bitstream Font Fusion® 5.0a Reference Guide
Functions for Creating and
Deleting the Cache Manager

FF_CM_New ()
FF_CM_Delete ()

FF_CM_Class *FF_CM_New(
long sizeofCache,
int *errCode,
tsi_ClientAllocMethod allocPtr,
tsi_ClientDeAllocMethod freePtr,
tsi_ClientReAllocMethod reallocPtr,
void * clientArgs)

Arguments

long is the size of the cache, including FF_CM_Class.

errCode is a pointer to the returned error code.

allocPtr is a function pointer of (tsi_ClientAllocMethod) type which is
the allocation method used by the client.

freePtr is a function pointer of (tsi_ClientDeAllocMethod) type which is
the de-allocation method used by the client.

reallocPtr is a function pointer of (tsi_ClientReAllocMethod) type
which is the re-allocation method used by the client.

clientArgs is of (void *) type which contains the arguments used by the
client.

Description

FF_CM_New() is a pointer to a function that creates a new instance of the Font
Fusion Cache Manager. If the ENABLE_CLIENT_ALLOC macro is ON,
FF_CM_New()is a pointer to a function that allows a third party to create a new
instance of the Font Fusion Cache Manager. In this case all the allocation/re-
174 Cache Manager API

Chapter 5
allocation/de-allocation of memory is handled by the client itself with the help of
the arguments explained above.

It returns a context pointer, which is NULL on failure.

To learn more about the code type for the typedefs, See “tsiMemObject
*tsi_NewMemhandler(” on page 51

NOTE: Please note that the allocPtr, freePtr, reallocPtr, and
clientArgs parameters are only applicable when the macro
ENABLE_CLIENT_ALLOC is ON.

void FF_CM_Delete(
FF_CM_Class *theCache,
int *errCode)

Arguments

theCache is a pointer to the cache class returned from FF_CM_New().

errCode is a pointer to the returned error code.

Description

FF_CM_Delete() destroys the cache manager context and frees the memory
used to hold the cache.
Cache Manager API 175

Bitstream Font Fusion® 5.0a Reference Guide
Functions for Working with
the Cache Manager

Use the following functions to work with the cache manager. These functions are
described below.

FF_CM_RenderGlyph ()
FF_CM_GlyphInCache()
FF_CM_Flush ()
FF_CM_SetFilter ()
FF_CM_Class *FF_CM_SetCacheSize ()
FF_CM_SetCompDecomp ()

void FF_CM_RenderGlyph(
FF_CM_Class *theCache,
uint16 font_code,
T2K **theScaler,
long char_code,
int8 xFracPenDelta,
int8 yFracPenDelta,
uint8 greyScaleLevel,
uint16 cmd,
int *errCode)

Arguments

theCache is a pointer to the cache class returned from FF_CM_New().

font_code is an integer code that identifies the font or a font instance you
previously created.

theScaler is a pointer to the current T2K scaler object in which the font is
current.

char_code is the character code to render.

xFracPenDelta and yFracPenDelta are normally set to zero. You can use
them with non-zero values (0 to 63) if you are also using fractional (subpixel)
character positioning.
176 Cache Manager API

Chapter 5
greyScaleLevel describes the level of anti-aliasing you want to apply. See
“Bits for the greyScaleLevel field” on page 117 for more information.

cmd describes to Font Fusion what to do with various bitflags. See “Bits for
the cmd field” on page 118 for more information.

errCode is a pointer to the returned error code.

Description

FF_CM_RenderGlyph() renders a glyph from a font instance active in the T2K
scaler object.

This function searches the cache based on the input parameters. If it finds the
character in the cache, then it updates the appropriate fields in the T2K scaler
object. If the character is not in the cache, then the Cache Manager begins the
sequence to create the character and place it in the cache. Font Fusion then
updates the scaler.

Parameters passed into the function include the scaler that is to be updated as
well as a pointer to the cache.

The char_code and font_code refer to the desired character in a particular
font. The FracPenDelta fields are required by the core. They have valid values
from 0 to 63 and refer to subpixel positioning. The greyScaleLevel is another
field needed by the core. It refers to what output mode the core should operate
in. The cmd is used to set the desired level of hinting in the core.

int FF_CM_GlyphInCache(
FF_CM_Class *theCache,
uint16 font_code,
T2K **theScaler,
long char_code,
int8 xFracPenDelta,
int8 yFracPenDelta,
uint8 greyScaleLevel,
uint16 cmd,
int *errCode)

Arguments

theCache is a pointer to the cache class returned from FF_CM_New().
Cache Manager API 177

Bitstream Font Fusion® 5.0a Reference Guide
font_code is an integer code that identifies the font or a font instance you
previously created.

theScaler is a pointer to the current T2K scaler object in which the font is
current.

char_code is the character code to render.

xFracPenDelta and yFracPenDelta are normally set to zero. You can use
them with non-zero values if you are also using fractional (subpixel) character
positioning.

greyScaleLevel describes the level of anti-aliasing you want to apply. See
“Bits for the greyScaleLevel field” on page 117 for more information.

cmd describes to Font Fusion what to do with various bitflags. See “Bits for
the cmd field” on page 118 for more information.

errCode is a pointer to the returned error code.

Description

The Cache Manager Query Glyph function searches the cache based on the input
parameters. If the character is found in the cache, the function returns true. If the
character is not in the cache, it returns false.

If the glyph is found in the cache, the scaler structure is populated with the
bitmap information so that they glyph can be rendered immediately, eliminating
the need to subsequently call FF_CM_RenderFlyph(). When the Scaler structure
is populated in this way, the T2K_RETURN_OUTLINES flag is set in the cmd
parameter, it will definitely be ignored. Only the bitmap information is delivered
giving a performance advantage to the calling unit.

NOTE: This function returns a non-zero value if the character is in the cache. The
function returns a zero value if the character is not in the cache.

Possible Error Codes

NONE

void FF_CM_Flush(
FF_CM_Class *theCache,
int *errCode)
178 Cache Manager API

Chapter 5
Arguments

theCache is a pointer to the cache class returned from FF_CM_New().

errCode is a pointer to the returned error code.

Description

FF_CM_Flush() re-initializes the cache.

void FF_CM_SetFilter(
FF_CM_Class *theCache,
uint16 FilterTag,
FF_T2K_FilterFuncPtr BitmapFilter,
void *filterParamsPtr)

Arguments

theCache is a pointer to the cache class returned from FF_CM_New().

FilterTag is a numeric tag for identifying filtering that theFilterFunc()
does. For example 0 might indicate a drop shadow filter, 1 a cross-hatch fill, and
so on.

BitmapFilter is a function pointer to the actual filter function.

filterParamsPtr is a pointer to an optional parameter block for the filter
function.

Description

FF_CM_SetFilter() sets parameters related to filtering. These parameters are
stored and applied to new characters that Font Fusion creates. The FilterTag
is a component of the search criteria for finding characters in the cache. It
distinguishes one glyph from another, for example, one with no filter versus one
with a drop shadow applied. The filter function is described in “Using Filters” on
page 89.
Cache Manager API 179

Bitstream Font Fusion® 5.0a Reference Guide
FF_CM_Class *FF_CM_SetCacheSize(
FF_CM_Class *theOldCache,
int32 newCacheSize,
int *errCode)

Arguments

theOldCache is a pointer to the old cache.

newCacheSize is the new cache size.

errCode is a pointer to the returned error code.

Description

Use this function to set the size of the cache.

void FF_CM_SetCompDecomp(
FF_CM_Class *theCache,
FF_CM_CompressionPtr compression ,
FF_CM_DecompressionPtr decompression)

Arguments

theCache is a pointer to the cache class returned from FF_CM_New().

compression is a pointer to register the compression method to use.

decompression is a pointer to register the decompression method to use.

Description

If you enable cache compression the system automatically uses the built in run-
length encoding (rle) compression/decompression algorithm. This requires no
additional API calls. If you want a different form of compression you can code any
form of compression or decompression necessary and use the
FF_CM_SetCompDecomp() routine to register these methods for use by the
system.
180 Cache Manager API

Chapter 5
Sample Code
The following is a simple example program using the Cache Manager and Font
Fusion Core.

/* To see Cache Manager instrumentation, add this line to CONFIG.H or cachemgr.h:
*/
/* #define CM_DEBUG1*/

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "T2K.H"
#include "cachemgr.h"

/*
 * Constants
 */
#define CACHE_SIZE20000

/*
 * Prototypes
 */
int main(void);
static void PrintChar(T2K *scaler);

/*
 * main: where it all happens, mainly!
 */
int main(void)
{

/* locals needed for the Cache Manager */
FF_CM_Class *theCache;
int errCode;
uint16 font_code = 0; /* only one font, always fontCode 0 */
uint8 filterTag = 0; /* only one filter: none */
/* locals needed for general T2K Core usage */
FILE *fpID = NULL;
unsigned long length, count;
unsigned char *data;
T2K_TRANS_MATRIX trans;
unsigned short charCode;
char *string = "AABBCCabcdefghijklmnopqrsabcdefghijklmnopqrsabcdef-

ghijklmnopqrs";
int i;
tsiMemObject*mem = NULL;
InputStream *in = NULL;
sfntClass *font = NULL;
T2K *scaler = NULL;
char *fName = "TT0003M_.TTF";
Cache Manager API 181

Bitstream Font Fusion® 5.0a Reference Guide
short fontType = FONT_TYPE_TT_OR_T2K;
int fontSize = 24;
uint8 cmd = T2K_RETURN_OUTLINES | T2K_NAT_GRID_FIT | T2K_SCAN_CONVERT;
uint8 greyScaleLevel = BLACK_AND_WHITE_BITMAP;

printf("\n\n\n");
printf("********** ****** ** **\n");
printf(" ** ** ** ** **\n");
printf(" ** ** ** **\n");
printf(" ** ** ** **\n");
printf(" ** ** ****\n");
printf(" ** ** ** **\n");
printf(" ** ** ** **\n");
printf(" ** ** ** **\n");
printf(" ** ********** ** **\n\n\n");
printf ("Hello World, this is a simple Font Fusion Example,\n\n");
printf ("showing use of the Cache Manager with T2K Core,\n\n");
printf ("with just printf statements for output,\n\n");
printf ("from www.bitstream.com !\n\n");

// Create a new Cache Manager to play around with.
theCache = FF_CM_New(CACHE_SIZE, &errCode);
assert(errCode == 0);

/* configure Cache filterTag for all the characters we will make */
FF_CM_SetFilter(theCache,

filterTag,
NULL,
NULL);

/* Create the Memhandler object. */
mem= tsi_NewMemhandler(&errCode);
assert(errCode == 0);

/* Open the font. */
fpID= fopen(fName, "rb"); assert(fpID != NULL);
errCode= fseek(fpID, 0L, SEEK_END); assert(errCode == 0);
length= (unsigned long)ftell(fpID); assert(ferror(fpID) == 0);
errCode= fseek(fpID, 0L, SEEK_SET); assert(errCode == 0); /* rewind */

/* Read the font into memory. */
data= (unsigned char *)malloc(sizeof(char) * length); assert(data !=

NULL);
count= fread(data, sizeof(char), length, fpID); assert(ferror(fpID) ==

0 && count == length);
errCode= fclose(fpID); assert(errCode == 0);
/* in = New_NonRamInputStream(mem, fpID, ReadFileDataFunc, length,

&errCode); */

/* Create the InputStream object, with data already in memory */
in = New_InputStream3(mem, data, length, &errCode); /* */
assert(errCode == 0);

/* Create an sfntClass object*/
182 Cache Manager API

Chapter 5
font = New_sfntClass(mem, fontType, in, NULL, &errCode);
assert(errCode == 0);

/* Create a T2K font scaler object. */
scaler = NewT2K(font->mem, font, &errCode);
assert(errCode == 0);

/* 12 point */
trans.t00 = ONE16Dot16 * fontSize;
trans.t01 = 0;
trans.t10 = 0;
trans.t11 = ONE16Dot16 * fontSize;
/* Set the transformation */
T2K_NewTransformation(scaler, true, 72, 72, &trans, true,

&errCode);
assert(errCode == 0);

for (i = 0; (charCode = string[i]) != 0; i++) {
/* Create a character */
printf("\n\n***Here comes the %c ****\n\n", (char)charCode);
FF_CM_RenderGlyph(theCache,font_code,

&scaler, charCode,
0, 0,
greyScaleLevel, cmd, &errCode);

assert(errCode == 0);
/* Now draw the char */
PrintChar(scaler);
/* Free up memory */
T2K_PurgeMemory(scaler, 1, &errCode);
assert(errCode == 0);

}

/* Destroy the T2K font scaler object. */
DeleteT2K(scaler, &errCode);
assert(errCode == 0);

/* Destroy the sfntClass object. */
Delete_sfntClass(font, &errCode);

/* Destroy the InputStream object. */
Delete_InputStream(in, &errCode);

free(data);
/* Destroy the Memhandler object. */
tsi_DeleteMemhandler(mem);

FF_CM_Delete(theCache, &errCode);

return 0;
}

/*
 * Print/Display Character Function
Cache Manager API 183

Bitstream Font Fusion® 5.0a Reference Guide
 */
static void PrintChar(T2K *scaler)
{
int y, x, k, w, h;
char c;

w = scaler->width;
assert(w <= scaler->rowBytes * 8);
h = scaler->height;

/* printf("w = %d, h = %d\n", w, h); */
k = 0;
for (y = 0; y < h; y++)
{

for (x = 0; x < w; x++)
{

if (scaler->rowBytes == w)
{ /* greyscale, byte walk, divide values by 12, map to digits and clamp

> '9' to '@' */
c =

(char)((scaler->baseAddr[k + x]) ?
scaler->baseAddr[k + x]/12 + '0' : '.');

if (c > '9')
c = '@';

}
else/* BLACK_AND_WHITE, fancy bit walk, off = '.' and on = '@' */

c =
(char)((scaler->baseAddr[k + (x>>3)] & (0x80 >> (x&7))) ?

'@' : '.');
printf("%c", c);

}
printf("\n");
k += scaler->rowBytes;

}
}

184 Cache Manager API

6F o n t F u s i o n A P I
f o r P r i n t e r
D e v e l o p e r s 1

Topics

General Information

Compile-Time Options

Font Types

Callback Functions

Bitstream Font Fusion® 5.0a Reference Guide
General Information
If you are developing a Hewlett-Packard printer or printer emulation, you need to
enable compile-time options and write callback functions described in this
appendix.
186 Font Fusion API for Printer Developers

Chapter 6
Compile-Time Options
Use the following compile-time options if you need to process scalable Intellifont
outlines.

Options: Printer
Fonts Description

ENABLE_PCL Enable this option to process scalable Intellifont
fonts that have been downloaded to a Hewlett-
Packard printer or printer emulation as
encapsulated outlines.
We have supplied a font reader for this format with
two new source modules, pclread.c and
pclread.h.
When using ENABLE_PCL, you need to write a
callback function, eo_get_char_data(),
documented in this appendix.

ENABLE_PCLETTO Enable this option to process TrueType fonts that
have been downloaded to a Hewlett-Packard
printer or printer emulation as encapsulated
outlines.
No additional font reader module is required.
When using ENABLE_PCLETTO, you need to write
a callback function, tt_get_char_data(),
documented in this appendix.
Font Fusion API for Printer Developers 187

Bitstream Font Fusion® 5.0a Reference Guide
Font Types
There are two additional font types that you can specify if you are a printer
developer using the Font Fusion API. These are listed in the table below:

fontType Description

FONT_TYPE_PCL Use with PCL
encapsulated outlines
(PCLeo) on HP printer
emulations

FONT_TYPE_PCLETTO Use with TrueType
encapsulated outlines
(PCLetto) on HP printer
emulations
188 Font Fusion API for Printer Developers

Chapter 6
Callback Functions
eo_get_char_data()

tt_get_char_data()

int eo_get_char_data(
long cCode,
uint8 cmd,
uint8 **pCharData,
uint16 *dataSize,
uint16 *charCode,
int16 *gIndex)

Arguments

cCode is the character code or glyph index you are requesting.

cmd is equal to zero (==0) if cCode is a character code; it is equal to
T2K_CODE_IS_GINDEX if cCode is a glyph index value.

pCharData returns a pointer to the glyph data for the character.

dataSize returns the size of the glyph data.

charCode returns the character code you are requesting.

gIndex returns the glyph index of the character code, or it is the same as cCode
if cmd==T2K_CODE_IS_GINDEX.

Description

Write the callback function eo_get_char_data() to get a pointer to an outline
character string from your application for a scalable Intellifont font.

You also need to define the compile-time option ENABLE_PCL.
Font Fusion API for Printer Developers 189

Bitstream Font Fusion® 5.0a Reference Guide
int tt_get_char_data(
long cCode,
uint8 cmd,
uint8 **pCharData,
uint16 *dataSize,
int16 *gIndex,
HPXL_MetricsInfo_t *metricsInfo)

Arguments

cCode is the character code or glyph index you are requesting.

cmd is equal to zero (==0) if cCode is a character code; it is equal to
T2K_CODE_IS_GINDEX if cCode is a glyph index value.

pCharData returns a pointer to the glyph data for the character.

dataSize returns the size of the glyph data.

gIndex returns the glyph index of the character code, or it is the same as cCode
if cmd==T2K_CODE_IS_GINDEX.

metricsInfo provides the application-level set width and left or top side
bearing information, described below.

Description

Write the callback function tt_get_char_data() to get a pointer to an outline
character string from your application for a scalable TrueType font.

You also need to define the compile-time option ENABLE_PCLETTO.
190 Font Fusion API for Printer Developers

Chapter 6
metricsInfo

The HPXL_MetricsInfo_t structure allows your application to return metrics
information about the requested character if it has received that information in
the downloaded material. This is consistent with the Hewlett-Packard XL
implementation for downloads of Asian font. Here is a specification of that
structure:

#ifdef ENABLE_PCLETTO
typedef struct
{

uint8 lsbSet;
uint16 lsb;
uint8 awSet;
uint16 aw;
uint8 tsbSet;
uint16 tsb;

}HPXL_MetricsInfo_t;
#endif

Currently this structure is only supported for PCLeTTo fonts, consistent with the
XL specification, which only applies to downloaded TrueType (PCLeTTo) fonts.

The callback function tt_get_char_data() must flag which values are valid
in the structure it returns by setting each of the Set fields to true, in order for
Font Fusion to respect the corresponding value. Therefore, if the application has
a left side-bearing for the requested character, it sets the lsbSet argument to
true and sets the lsb member to the side-bearing value.

All units for these arguments are in design units.
Font Fusion API for Printer Developers 191

Bitstream Font Fusion® 5.0a Reference Guide
Format 16 Font Header
Support

Format 16 Font Header is an extended PCL soft font header structure which
increases the data segment size fields to long (from short) and includes optional
data segments for supporting gallery characters (GC), vertical translation (VT),
vertical rotation (VR) and vertical exclusion (VE).

Font Header Format 16 (Universal Font Header) is identical in structure to
Format 15 (Universal Scalable Font Header), with the size field for data segments
increased from 16 bits to 32 bits, and a new fontType (fontType 3) added to
signify “large” fonts. A “large” font is a bound font with character codes that are
not limited to 8-bit values. Some font data segments in “large” fonts can exceed
65535 bytes.

The compile conditional ENABLE_PCLETTO should be turned ON to enable the
Format 16 Font Header support in Font Fusion.

When Font Fusion encounters a PCLetto font with the fontType set to “3”, all
segmented data blocks which follow the header structure are assumed to have 4-
byte size fields as opposed to the default two-bytes for non-“large” fonts.

The support of the Format 16 Font Header primarily involves support for the
following segmented data blocks:

Galley Character (GC): Indicates the character code for the missing glyph
based on ranges of character codes. If a missing character falls into one of the
ranges in this table the associated missing glyph character is used instead of
the default (glyph index 0).
Vertical Exclusion (VE): If vertical writing is specified (T2K_VERTICAL and/
or T2K_VERT_SUB) and the requested character code is found in this table
the character will not have any special vertical processing done to it.
Vertical Translation (VT): Identifies the vertical substitute glyphs. If vertical
substitution is specified (T2K_VERT_SUB) and the requested glyph index
exists in this table the associated “Vertical” glyph index is rendered instead.
Vertical Rotation (VR): If vertical writing is specified (T2K_VERTICAL) and
the requested glyph has not been substituted it will be rotated counter-
clockwise 90° and positioned according to the users specification.
192 Font Fusion API for Printer Developers

Chapter 6
FF_SetVertPos(
sfntClass*,
uint8 value)

Arguments

sfntClass refers to the sfntClass (font) object.

value defines the vertical positioning of the font.

Description

Use the FF_SetVertPos() API to set the sfntClass->vert_pos element as
follows:

** All other values are ignored.

Value Description

0 OFF

1 Positions the character
middle right against the
origin

2 Positions the character top
right against the origin.
Font Fusion API for Printer Developers 193

Bitstream Font Fusion® 5.0a Reference Guide
Font Information Table
The Font Information Table is the glue that binds together the files comprising a
particular resident font set.

FIT File Structure

For each font in the resident font set, the Font Information Table contains these
fields, as shown in Figure 14-1:

the font alias name
an 88-byte field describing font attributes (for PCL emulations)
the page description language being emulated (PCL, PostScript, and/or
TrueType)
the address in memory where you will store the font
a next-search encoding value that, when decoded, gives you the next index
into the Font Information Table where you can find a support typeface for
dropout (missing) characters

Font Alias Name

Typically, page description languages request fonts in one of two ways. One is by
name; the second is by attribute.

Record 1
(First font
in RFS)

Font
alias
name
field

PCL font
attribute

PCL
emulation
field

Resident
font
address
field

Next-
search
encoding
value
field

Required
resolution
field

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Record 2
(First font
in RFS)

Font
alias
name
field

PCL font
attribute

PCL
emulation
field

Resident
font
address
field

Next-
search
encoding
value
field

Required
resolution
field
194 Font Fusion API for Printer Developers

Chapter 6
The FIT lets you translate a font name that an application requests into the name
of the identical font in your Bitstream Resident Font Set. It also lets you match
the attributes of a requested font with an equivalent font in the Resident Font
Set.

The font alias name depends on the page description language you support. If
you support PostScript, the font alias name for Times is Bitstream Dutch 801
SWA (a Bitstream Speedo typeface set width adjusted to Adobe widths); for
Helvetica, it is Bitstream Swiss 721 SWA.

If you support Windows 3.1 GDI (TrueType), the font alias name for Times New
Roman is Bitstream Dutch 801 SWM (a Bitstream Speedo typeface set width
adjusted to Monotype widths); for Arial, it is Bitstream Swiss 721 SWM.

If, on the other hand, you support PCL, the FIT also includes an 88-byte field
describing Hewlett-Packard PCL-compatible font attributes.

PCL Font Attributes

This 88-byte field lets you match the attributes of a requested PCLeo font with
an equivalent font in the resident font set. The attributes are described below.

Bytes in the PCL Font Attributes Field

All values in the PCL font attributes field are described below. They reflect the
values as they pertain to Bitstream fonts in the HP LaserJet IIIsi-compatible
resident font set.

Font Name Requested Bitstream Equivalent

Helvetica Bold Swiss 721 Bold SWA
(SWA=set-width adjusted to Adobe widths)

Arial Bold Swiss 721 Bold SWM
(SWM=set-width adjusted to Monotype
widths)

Univers Bold Swiss 721 Bold SWC
(SWC=set-width adjusted to Agfa, formerly
known as Compugraphic, widths)
Font Fusion API for Printer Developers 195

Bitstream Font Fusion® 5.0a Reference Guide
The table below shows the 88-byte PCL font attributes field of FIT.

Value Font Type

0 7-bit (96 characters: characters 32-127
allowed)

1 8-bit (192 characters: characters 32-127 and
160-255 allowed)

2 PC-8 (256 characters: all characters can be
printed; but characters 0, 7-15, and 27 must be
printed in transparency mode)

10 Scalable

Byte MSB (Most Significant Byte) LSB (Least Significant Byte)

0 Font Descriptor Size (88)

2 Descriptor Format Font Type

4 Style MSB

6 Baseline Distance

8 Cell Width

10 Cell Height

12 Orientation Spacing

14 Symbol Set

16 Pitch (Default HMI)

18 Height

20 xHeight

22 Width Type Style LSB

24 Stroke Weight Typeface LSB

26 Typeface MSB Serif Style

28 Quality Placement

30 Underline Distance Underline Height
196 Font Fusion API for Printer Developers

Chapter 6
Font Descriptor Size

2-byte unsigned integer. This value is always 88, although your printer or
application ignores it. The value is most useful in identifying the type of header
(that is, a PCLeo "unbound" header) that follows.

Descriptor Format

Unsigned byte. This value is always twelve.

32 Reserved1

34 Reserved2

36 Reserved3

38 Number of Outlines

40 Pitch Extended Height Extended

42 Cap Height

44-47 Font Number

48-63 Font Name

64 Scale Factor

66 Master X Resolution

68 Master Y Resolution

70 Master Underline Position

72 Master Underline Height

74 LRE Threshold

76 Italic Angle

78-81 Character Complement MSW

82-85 Character Complement LSW

86 Data Size

Byte MSB (Most Significant Byte) LSB (Least Significant Byte)
Font Fusion API for Printer Developers 197

Bitstream Font Fusion® 5.0a Reference Guide
Font Type

Unsigned byte. This value is always 10 for fonts in the resident font set. Note
that this value is appropriate for the font's character set.

Style MSB

2-byte unsigned integer. Combine the Style MSB (most significant byte, byte 4)
with the Style LSB (least significant byte, byte 23) to come up with the "Style."
Calculate the style using this formula:

Style = Posture + (4 * Width) + (32 * Structure)

This is the binary structure of the "Style":

where the values for posture, width, and structure are determined as follows:

X Reserved Structure Width Posture

Value Bits 0-1, Posture

0 Upright

1 Italic

2 Alternate Italic

3 Reserved

Value Bits 2-4, Width (multiply the value by 4)

0 Normal

1 Condensed

2 Compressed or Extra Condensed

3 Extra Compressed

4 Ultra Compressed
198 Font Fusion API for Printer Developers

Chapter 6
Baseline Distance

2-byte unsigned integer. The distance from the top of the cell to the baseline in
ORUs, or outline resolution units (1/1000 of an em). See Figure 14-4. Your PCL
emulator ignores this field.

Cell Width

2-byte unsigned integer. The width of the font wide bounding box, in ORUs.
(The fontwide bounding box is the minimum rectangle that can enclose the

5 Reserved

6 Extended or Expanded

7 Extra Extended or Extra Expanded

Value Bits 5-9, Structure (multiply the value by
32)

0 Solid

1 Outline

2 Inline

3 Contour

4 Solid with Shadow

5 Outline with Shadow

6 Inline with Shadow

7 Contour with Shadow

8-11 Patterned

12-15 Patterned with Shadow

16 Reverse

17 Inverse in Open Border

18-31 Reserved

Value Bits 2-4, Width (multiply the value by 4)
Font Fusion API for Printer Developers 199

Bitstream Font Fusion® 5.0a Reference Guide
largest character or compound character, such as a fraction, in the font). Note
that the cell width can be larger than the em square; the cell width can range
from 1 to 65535. Your PCL emulator ignores this field.

Cell Height

2-byte unsigned integer. The height of the fontwide bounding box, in ORUs.
Note that the cell height can be larger than the em square; the cell height can
range from 1 to 65535. Your PCL emulator ignores this field.

Capital "B" within the em square of a Bitstream font

Orientation

Unsigned byte. Always zero. Your PCL emulator ignores this field.

Spacing

Boolean. Zero specifies fixed spacing; one specifies proportional spacing.

Symbol Set

2-byte unsigned integer. Always zero.
200 Font Fusion API for Printer Developers

Chapter 6
NOTE: The Character Complement values (bytes 78-85) indicate symbol set
compatibility.

Pitch

2-byte unsigned integer. The default pitch used for monospaced and proportional
fonts, in ORUs. (The default HMI, or Horizontal Motion Index, is equal to this
pitch value. The default HMI is the set width of a space character for the font and
is used if you cannot generate a character image from the current font.)

The default set width for monospaced fonts is determined by the pitch
value.(The set width is the width of any monospaced character plus its side
bearings.)

Height

2-byte unsigned integer. This value is always 96.

xHeight

2-byte unsigned integer. The height from the baseline to the top of the lowercase
"x," in ORUs.

Width Type

Signed byte. The relative width of the font, as follows. Note that your PCL
emulator ignores this field.

NOTE: Use bits 2-4 of the Style MSB value (byte 4) to determine the width type
for the current font.

Value Width Type

-5 Ultra Compressed

-4 Extra Compressed

-3 Compressed or Extra Condensed

-2 Condensed

0 Normal

2 Expanded

3 Extra Expanded
Font Fusion API for Printer Developers 201

Bitstream Font Fusion® 5.0a Reference Guide
Style LSB

Unsigned byte. The least significant byte of the "Style." See bits 0-1 (Posture) of
the Style MSB (byte 4) for details.

Stroke Weight

Signed byte. The relative weight (thickness) of the strokes in a range from -7 to
7, where these values have the following stroke weights:

Typeface LSB

Unsigned byte. Indicates Typeface Family, as explained below.

Typeface MSB

Unsigned byte. The value for the Typeface Family field (bits 0 through 8) is
represented in the Typeface LSB. The value takes into account the typeface only,

Value Stroke Weight

-7 Ultra Thin

-6 Extra Thin

-5 Thin

-4 Extra Light

-3 Light

-2 Demi Light

-1 Semi Light

0 Medium, Book, or Text

1 Semi Bold

2 Demi Bold

3 Bold

4 Extra Bold

5 Black

5 Extra Black

7 Ultra Black
202 Font Fusion API for Printer Developers

Chapter 6
not the style (e.g., roman, italic, bold, bold italic). For example, a value of 52
indicates Univers (equivalent to Bitstream Swiss 721).

The value for the Version field (bits 9 and 10) is always 0.

The value for the Vendor field (bits 11 through 14) is either 4 (for a Bitstream
font that has the word "SWC" in the font name) or 2 (for a Bitstream font that
does not have the word "SWC" in the font name). The font name value is at bytes
48-63.

Combined, the total Version and Vendor value is either 32 (for a Bitstream font
that has the word "SWC" in the font name) or 16 (for a Bitstream font that does
not have the word "SWC" in the font name).

This is the binary structure of the "Typeface," where the most significant bit (bit
15) of the MSB is zero:

Serif Style

Unsigned byte. Although HP has designated several serif style definitions, this
field is most useful in distinguishing between serif and sanserif styles. The figure
below shows an example of sanserif and serif styles.

Sans serif capital "B" and serif capital "B"

This field specifies a serif or sanserif style. The upper two bits (6 and 7) are used
to determine the serif style of typeface-insensitive characters to complement the
font. These are the serif style values for the lower six bits (0 through 5), followed
by the values for the upper two bits:

15 14 10 8 0
|0 |Vendor |Version |Typeface Family |
Typeface MSB Typeface LSB
Font Fusion API for Printer Developers 203

Bitstream Font Fusion® 5.0a Reference Guide
NOTE: Reserve other numbers for future use.

Quality

Unsigned byte. The quality of the font, as follows:

Value Serif Style, Lower Six Bits

0 Sanserif, Square

1 Sanserif, Round

2 Serif, Line

3 Serif, Triangle

4 Serif, Swath

5 Serif, Block

6 Serif, Bracket

7 Rounded, Bracket

8 Flair Serif, Modified Sans

9 Script, Nonconnecting

10 Script, Joining

11 Script, Calligraphic

12 Script, Broken Letter

Value Serif Style, Upper Two Bits

64 Sanserif

128 Serif

192 Reserved
204 Font Fusion API for Printer Developers

Chapter 6
Your PCL emulator ignores this field.

Placement

Signed byte. Specifies the position of character patterns relative to the baseline.
Your PCL emulator ignores this field.

Underline Distance

Signed byte. This value is always zero for PCLeo fonts. See Master Underline
Position, bytes 70 and 71, for more relevant information.

Old Underline Height

Unsigned byte. This value is always zero for PCLeo fonts. See Master Underline
Height, bytes 72 and 73, for more relevant information.

Reserved1

2-byte unsigned integer. This value is reserved.

Reserved2

2-byte unsigned integer. This value is reserved.

Reserved3

2-byte unsigned integer. This value is reserved.

Number of Outlines

2-byte unsigned integer. This value is reserved.

Value Quality

0 Data processing

1 Near letter quality

2 Letter Quality
Font Fusion API for Printer Developers 205

Bitstream Font Fusion® 5.0a Reference Guide
Pitch Extended

Unsigned byte. This value is always zero.

Height Extended

Unsigned byte. This value is always zero.

Cap Height

2-byte unsigned integer. The distance from the baseline to the cap line (the top of
an unaccented, upper-case letter, such as the "H"), in ORUs.

Font Number

4-byte unsigned integer. The font ID number that Bitstream assigns to the font.
Your PCL emulator ignores this field.

Font Name

16-character string. The short font name, which can be up to 16 characters long.
It does not include the style (e.g., roman, italic, bold, bold italic).

Scale Factor

2-byte unsigned integer. It indicates the number of Outline Resolution Units
(ORUs) of the characters and This field can take variable values. The outline
resolution of the OEM PFRs is 256.

Master X Resolution

2-byte unsigned integer. It indicates the pixel resolution, in the x scan direction,
at which the font was designed. This field can take variable values. Normally,
there are 256 ORUs along the x axis of an OEM PFR.

Master Y Resolution

2-byte unsigned integer. It indicates the pixel resolution, in the y scan direction,
at which the font was designed. This field can take variable values. Normally,
there are 256 ORUs along the y axis of an OEM PFR.
206 Font Fusion API for Printer Developers

Chapter 6
Master Underline Position

2-byte signed integer. The distance from the baseline to the center of the
underline, in ORUs.

Master Underline Height

2-byte unsigned integer. The thickness of the underline, in ORUs.

LRE Threshold

2-byte unsigned integer. This value is always zero.

Italic Angle

2-byte unsigned integer. The tangent of the italic angle multiplied by 2 15 (2 to
the 15th power). This value is zero for upright fonts.

Character Complement MSW

4-byte unsigned integer. Character complement, most significant word.

Character Complement LSW

4-byte unsigned integer. Character complement, least significant word.

The Character Complement MSW and LSW are each 32-bit values that indicate
the character set that the current font is compatible with.

Each bit identifies a collection of character sets that the font is compatible with;
each bit is interpreted independently.

Here are some examples of individually defined bits:
Font Fusion API for Printer Developers 207

Bitstream Font Fusion® 5.0a Reference Guide
Here are some examples of complete Character Complement MSW and LSW
values:

Bit Value Compatibility with Character Set Collection

63 0 Font is compatible with Basic Latin collection
(for such character sets as ISO 8859/1 Latin 1)

1 Font is not compatible with this collection

62 0 Font is compatible with East European Lain
collection (for such character sets as ISO
8859/2 Latin 2)

1 Font is not compatible with this collection

61 0 Font is compatible with Turkish collection (for
such character sets as ISO 8859/9 Latin 5)

1 Font is not compatible with this collection

34 0 Font is compatible with Math collection (for
such character sets as Math 8)

1 Font is not compatible with this collection

33 0 Font is compatible with Semi-graphic
collection (for such character sets as PC-8 D/
N)

1 Font is not compatible with this collection

32 0 Font is compatible with Dingbats collection
(for character sets such as ITC Zapf Dingbats
series 100, 200, etc.)

1 Font is not compatible with this collection
208 Font Fusion API for Printer Developers

Chapter 6
Data Size

2-byte unsigned integer. This value is always zero.

Page Description Language Being Emulated for the Resident Font Set

The value for this field is either pdlPCL (for PCL resident font set emulations),
pdlPostScript (for PostScript resident font set emulations), pdlGDI (for
TrueType resident font set emulations), or pdlSupport (for resident auxiliary
and support fonts).

This field helps you include or exclude resident fonts for matches by font name
or font attributes. It also helps you distinguish the ORUs (outline resolution
units), or design units, being used for the resident font set without having to
look up the ORU value in a data structure.

Providing Substitute Support for Missing Characters

Typically, support characters—such as line draw and border pieces, mathematical
signs, symbols, etc., that fall into a broad class of special or requested
characters—are taken from supplemental fonts. Supplemental characters
augment characters in standard character sets.

Hex Value Compatibility

0000000000000000 Default; font is compatible with every character set
collection

7FFFFFFFFFFFFFFF Font is compatible with the Basic Latin character sets
only

FFFFFFFEFFFFFFFF Font is compatible with ITC Zapf Dingbats character
sets only
Font Fusion API for Printer Developers 209

Bitstream Font Fusion® 5.0a Reference Guide
Examples of support characters

If a font does not contain a support character, the FIT contains a field that allows
you to look for the dropout character in another font. This field gives you the
next index in the Font Information Table where you can find a support typeface
for dropout (missing) characters.

The "next-search" encoding value field in the FIT lets you search for a character
index in the next relative or absolute place. A relative jump occurs within the
same FIT; for example, from a bold italic to a bold font, or from a serif to a
sanserif font. You then search for the same character index in the relative font.

Using FIT at Run-Time

You can burn binary FIT images into ROM or load them from disk at run-time.
Your application should maintain a dynamic FIT structure. Or your application
should maintain a FIT structure large enough for the maximum possible number
of fonts a user can load. This includes font cartridge combinations that a user can
insert into your printer, and, depending on your implementation, downloaded
font entries. You must add to or delete from the FIT structure during run-time as
a user downloads fonts and adds and removes cartridges.

Your application selects fonts by walking through the run-time FIT structure;
comparing font selection criteria to the attributes found in the pclHdr member;
and scoring the criteria by the rules defined in the PCL5 Developer's Guide, sections
5-3 and 5-4. When walking through the FIT structure to select a primary font,
your application should ignore entries whose pdlType member is flagged as
210 Font Fusion API for Printer Developers

Chapter 6
pdlSupport. Your application may need to distinguish other pdlTypes, such
as PostScript fonts from the other primary fonts, but you may never need to
distinguish the pdlGDI fonts from the pdlPCL fonts.

Two Different Support-Font Structures

Bitstream has developed a more verbose support-font network to precisely
emulate the HP standard. It also makes finding the correct support-font entry
point into the FIT logic more comprehensible. "Entry point" in this context refers
to the font in the FIT where your code begins pursuing the FIT's logic encoded in
the nextSearchEncode field.

Current Font-Support Network

LaserJet 4 resident fonts are divided into several logical groups. These are (1)
Intellifont Proportional, (2) Intellifont Fixed Pitch 5291, (3) Intellifont Fixed
Pitch 4409, (4) Unicode, and (5) PostScript.

The Spacing member of the PCL header, if equal to zero, identifies a fixed-pitch
font. Each group except group 5 has its own support-font set. Here is the
support-font set for group 1.

 font3158 font3159 font3160 font3161

 (Serif Medium) (Serif Bold) (Sans medium) (Sans Bold)

 font3162

 (Universal)

Following the FIT's nextSearchEncode member for a primary resident font
reveals that it goes to the top layer first, selecting one of these four support fonts,
and from there to the bottom layer. The top-level decision involving a
downloaded font in this group is simple: does the primary (Intellifont
proportional) font have serifs and is it bold? Here is the support-font set for
group 2.

 font3229 font3230

 (Fix 5291 Medium) (Fix 5291 Bold)

 font3227

 (Fix 5291 Universal)
Font Fusion API for Printer Developers 211

Bitstream Font Fusion® 5.0a Reference Guide
Again, the top-level decision involving a downloaded font in this group is simple:
is the downloaded font, with a pitch of 5291, bold or not?

The exact same thing is true for group 3, except that the pitch is 4409.

 font3231 font3232

 (Fix 4409 Medium) (Fix 4409 Bold)

 font3228

 (Fix 4409 Universal)

Group 4's support-font set is limited to Universal characters only, so there is only
one font, ID = 3233. Your application can make no other decisions once it
determines the Unicode basis of the font.

Group 5 has no support fonts; resident fonts in that set are bucketed within font
families only. The support system defined above supports the primary resident
fonts. If a downloaded font is the current font, and there are missing characters,
you should simply follow the same logic. A decision tree for a downloaded font
might appear as shown in the figure below. The terminal integers shown in figure
are the font IDs of resident support fonts. The first font ID you encounter in the
path is the point of entry into the FIT logic. Follow the nextSearchEncode
path to complete the support-font path.
212 Font Fusion API for Printer Developers

Chapter 6
Decision tree for downloaded font in current support-font network.

Legacy FIT Usage

The legacy support-font system differs in two ways from that used in the current
product. First, Bitstream embedded support characters for groups 2, 3, and 4 into
certain primary resident fonts in those three groups. Second, the support set for
groups 1, 2, and 3 was more compact. This required the path to deviate, as
defined in the nextSearchEncode member of the FIT structure, from the sanserif
to the serif supplements.

The main issue with the legacy FITs was entering the FIT logic for the Unicode
fonts (group 4) and the Fixed Pitch fonts (groups 2 and 3).

For the Unicode fonts, the answer is easy. All the universal characters are in the
Times New Roman emulator font (ID = 3234).

For Fixed Pitch = 5291, bold support started at Courier Bold (ID = 3221), roman
support at Courier Medium (ID = 3220). When the pitch was 4409, bold support
Font Fusion API for Printer Developers 213

Bitstream Font Fusion® 5.0a Reference Guide
started at Letter Gothic Bold (ID = 3225), roman support at Letter Gothic
Regular (ID = 3224). From those entry points, the FIT directs the remainder of
the support path.
214 Font Fusion API for Printer Developers

7Te x t F l o w s 1

Overview

Font Fusion Core

Font Manager

Cache Manager

Font Manager and Cache Manager

Bitstream Font Fusion® 5.0a Reference Guide
Overview
The text flows below illustrate the typical functions called by an application using
Font Fusion. Each function has an errCode associated with it. If there is an
error, Font Fusion deletes all of its objects. In the case of an error, you need to
restart the objects that shared the same tsiMemObject.
216 Text Flows

Chapter 7
Font Fusion Core
tsi_NewMemhandler(&errCode)
if (errCode) goto ERROR;
 New_InputStream3(..., &errCode)
 if (errCode) goto ERROR;
 New_sfntClass(..., &errCode)
 if (errCode) goto ERROR;
 NewT2k(..., &errCode)
 if (errCode) goto ERROR;
 T2K_NewTransformation(..., &errCode)
 if (errCode) goto ERROR;
 T2K_RenderGlyph(..., &errCode)
 if (errCode) goto ERROR;
 T2K_PurgeMemory(..., &errCode)
 if (errCode) goto ERROR;
 DeleteT2K(..., &errCode)
 if (errCode) goto ERROR;
 Delete_sfntClass(..., &errCode)
 if (errCode) goto ERROR;
 Delete_InputStream(..., &errCode)
 if (errCode) goto ERROR;
tsi_DeleteMemhandler()

:ERROR
Text Flows 217

Bitstream Font Fusion® 5.0a Reference Guide
Font Manager
tsi_NewMemhandler(&errCode);
if (errCode) goto ERROR;
 FF_FM_New(&errCode);
 if (errCode) goto ERROR;
 New_InputStream3(..., &errCode)
 if (errCode) goto ERROR;
 FF_FM_AddTypefaceStream(..., &errCode)
 if (errCode) goto ERROR;
 FF_FM_CreateFont(..., &errCode)
 if (errCode) goto ERROR;
 FF_FM_SelectFont(..., &errCode)
 if (errCode) goto ERROR;
 FF_FM_RenderGlyph(..., &errCode)
 if (errCode) goto ERROR;
 T2K_PurgeMemory(..., &errCode)
 if (errCode) goto ERROR;
 FF_FM_DeleteFont(..., &errCode)
 if (errCode) goto ERROR;
 FF_FM_Delete(pFMGlobals, &errCode)
 if (errCode) goto ERROR;
 Delete_InputStream(..., &errCode)
 if (errCode) goto ERROR;
tsi_DeleteMemhandler()

:ERROR
218 Text Flows

Chapter 7
Cache Manager
FF_CM_New(CACHE_SIZE, &errCode)
if (errCode) goto ERROR;
 tsi_NewMemhandler(&errCode)
 if (errCode) goto ERROR;
 New_InputStream3(..., &errCode)
 if (errCode) goto ERROR;
 New_sfntClass(..., &errCode)
 if (errCode) goto ERROR;
 NewT2k(..., &errCode)
 if (errCode) goto ERROR;
 T2K_NewTransformation(..., &errCode)
 if (errCode) goto ERROR;
 FF_CM_RenderGlyph(..., &errCode)
 if (errCode) goto ERROR;
 T2K_PurgeMemory(..., &errCode)
 if (errCode) goto ERROR;
 DeleteT2K(..., &errCode)
 if (errCode) goto ERROR;
 Delete_sfntClass(..., &errCode)
 if (errCode) goto ERROR;
 Delete_InputStream(..., &errCode)
 if (errCode) goto ERROR;
 tsi_DeleteMemhandler()
FF_CM_Delete(..., &errCode)

:ERROR
Text Flows 219

Bitstream Font Fusion® 5.0a Reference Guide
Font Manager and Cache
Manager

tsi_NewMemhandler(&errCode);
if (errCode) goto ERROR;
 New_InputStream3(..., &errCode)
 if (errCode) goto ERROR;
 FF_CM_New(CACHE_SIZE, &errCode)
 if (errCode) goto ERROR;
 FF_FM_New(&errCode);
 if (errCode) goto ERROR;
 FF_FM_AddTypefaceStream(..., &errCode)
 if (errCode) goto ERROR;
 FF_FM_CreateFont(..., &errCode)
 if (errCode) goto ERROR;
 FF_FM_SelectFont(..., &errCode)
 if (errCode) goto ERROR;
 FF_CM_RenderGlyph(..., &errCode)
 if (errCode) goto ERROR;
 T2K_PurgeMemory(..., &errCode)
 if (errCode) goto ERROR;
 FF_FM_DeleteFont(..., &errCode);
 if (errCode) goto ERROR;
 FF_FM_Delete(pFMGlobals, &errCode)
 if (errCode) goto ERROR;
 FF_CM_Delete(theCache, &errCode)
 if (errCode) goto ERROR;
 Delete_InputStream(..., &errCode)
 if (errCode) goto ERROR;
tsi_DeleteMemhandler()

:ERROR
220 Text Flows

8E r r o r C o d e s 1

Font Fusion Core

Font Manager

Cache Manager

Bitstream Font Fusion® 4.5a Reference Guide
Font Fusion Core Error
Codes.

The table below displays the error codes which can be received for the Font
Fusion core.

Error
Code Mnemonic

10000 T2K_ERR_MEM_IS_NULL

10001 T2K_ERR_TRANS_IS_NULL

10002 T2K_ERR_RES_IS_NOT_POS

10003 T2K_ERR_BAD_GRAY_CMD

10004 T2K_ERR_BAD_FRAC_PEN

10005 T2K_ERR_GOT_NULL_GLYPH

10006 T2K_ERR_TOO_MANY_POINTS

10007 T2K_ERR_BAD_T2K_STAMP

10008 T2K_ERR_MEM_MALLOC_FAILED

10009 T2K_ERR_BAD_MEM_STAMP

10010 T2K_ERR_MEM_LEAK

10011 T2K_ERR_NULL_MEM

10012 T2K_ERR_MEM_TOO_MANY_PTRS

10013 T2K_ERR_BAD_PTR_COUNT

10014 T2K_ERR_MEM_REALLOC_FAILED

10015 T2K_ERR_MEM_BAD_PTR

10016 T2K_ERR_MEM_INVALID_PTR

10017 T2K_ERR_MEM_BAD_LOGIC

10018 T2K_ERR_INTERNAL_LOGIC

10019 T2K_ERR_USE_PAST_DEATH
222 Error Codes

Chapter 8
10020 T2K_ERR_NEG_MEM_REQUEST

10021 T2K_BAD_CMAP

10022 T2K_UNKNOWN_CFF_VERSION

10023 T2K_MAXPOINTS_TOO_LOW

10024 T2K_EXT_IO_CALLBACK_ERR

10025 T2K_BAD_FONT

Error
Code Mnemonic
Error Codes 223

Bitstream Font Fusion® 4.5a Reference Guide
Font And Cache Manager
Error Codes

The table below displays the error codes which can be received for the Font
Manager.

The Cache Manager has no specific error codes.

Error
Code Mnemonic

20000 FF_FM_ERR_BAD_INDEX

20001 FF_FM_ERR_BAD_FONTCODE

20002 FF_FM_ERR_CREATE_FONT_OFLO_ERR

20003 FF_FM_ERR_FONT_CODE_ERR

20004 FF_FM_ERR_UNKNOWN_FONT_TYPE
224 Error Codes

9F o n t F u s i o n
F A Q 1

This chapter tries to give you hints and backgrounds for
the most frequently asked questions as how to start, what
files to look at, and a few problems with rules of thumb to
get over them. The chapter also lists some performance
tuning tips to ensure optimal performance and efficient
memory use when you use Font Fusion.

Bitstream Font Fusion® 4.5a Reference Guide
Performance Tuning Tips
Font Fusion is designed to be fast, small, and customizable. Below listed are
some points that describe how to maximize performance and minimize the
memory consumptions.

Please note that performance and storage may vary, depending on device,
operating system, and data.

Outlines should not be requested from T2K_RenderGlyph() when they are
not needed. Since the outlines are not cached, doing so substantially
degrades the performance.
For the best quality and end-user experience you should use grayscale
antialiasing mode whenever possible.
T2K run-time hinting degrades the performance. Keep in mind the following:

For monochrome output - turn it ON.
For a high quality display device such as a computer monitor - turn it
ON.
For a device such as a TV monitor - turn it OFF.

In the release build, turn OFF asserts in "CONFIG.H" to increase speed and to
reduce the code size.
For an embedded system where the fonts are well build and you do not have
overlapping strokes, disable USE_NON_ZERO_WINDING_RULE in config.h
as you will get a small (probably less than 1%) speed-up by disabling this.
Employ one tsiMemObject per font as a slight performance advantage is
observed.
Turn ON auto-gridding only if it is required. Auto-gridding is not
recommended for general use.
Do not use Font Manager in normal conditions. It should be employed only
when number of font streams are needed at a single instance of time.
Do not call Font Fusion functions more often than needed.
The include file names are totally configurable in Font Fusion. In case of
header file name conflicts as dtypes.h, please rename the file and change
the corresponding macros in ffinclude.h. If need arises to rename the
config.h header file, please define the macro FF_FFCONFIG_HEADER to
the desired file name in the build system.
226 Font Fusion FAQ

Chapter 9
FAQ
Q 1: What files do I need to look at initially?

 A 1: First you need to familiarize yourself with the file "T2K.H"."T2K.H"
contains documentation, a coding example and the actual T2K API.

Second you need to look at "CONFIG.H". "CONFIG.H" is the only file you
normally need to edit. The file configures T2K for your platform, and it
enables or disables optional features, and it allows you to build debug or
non-debug versions. The file itself contains more information. Turn OFF
features you do not need in order to minimize the size of the T2K font
engine.

Q 2: What is the basic principle for the usage of T2K API?

 A 2: The basic idea is that T2K was designed to be object oriented, even though
the actual implementation is only using ANSI C. This means that you will be
creating a number of objects when you use T2K.

All classes have a constructor and destructor. It is important that you call the
proper destructor when you are done with a particular object.

Q 3: What is the best way of getting T2K going on a new platform?

 A 3: First configure "CONFIG.H" and then look at the coding example
T2K_DOCUMENTATION_CODING_EXAMPLE given in T2K.H. We recommend
that you start "outside in".

First create and destroy a "Memhandler" object:
tsiMemObject *mem = NULL;

mem = tsi_NewMemhandler(&errCode);
assert(errCode == 0);
/* Destroy the Memhandler object. */
tsi_DeleteMemhandler(mem);

Next create an InputStream object.
tsiMemObject *mem = NULL;
InputStream *in = NULL;
mem = tsi_NewMemhandler(&errCode);
assert(errCode == 0);

/* otherwise do this if you allocated the data */
in = New_InputStream3(mem, data1, size1, &errCode);
assert(errCode == 0);
/* Destroy the InputStream object. */
Delete_InputStream(in, &errCode);

/* Destroy the Memhandler object. */
tsi_DeleteMemhandler(mem);
Font Fusion FAQ 227

Bitstream Font Fusion® 4.5a Reference Guide
Next you would create the "sfntClass" object and then finally the "T2K"
scaler object.

Q 4: What do I do next with the T2K scaler object?

 A 4: Follow the steps listed below:
A Set the "transformation" with the T2K_NewTransformation() call/

method. Essentially, you specify the pointsize, x and y resolution, and a
2*2 transformation matrix, and true/false if you want embedded bitmaps
to be enabled.

B Call T2K_RenderGlyph() to get bitmap and/or outline data.
C Call T2K_PurgeMemory to free up memory.

Q 5: To get bitmap - I call T2K_RenderGlyph(), but where do I get
access to the bitmap data?

 A 5: You get access to the bitmap data through public fields in the T2K class/
structure. Find the following fields:
/* Begin bitmap data */
long width, height;
F26Dot6 fTop26Dot6, fLeft26Dot6;
long rowBytes;
unsigned char *baseAddr; /* unsigned char baseAddr[N], N = t-
>rowBytes * t->height */
uint32 *baseARGB;
/* End bitmap data */

baseAddr is either a bit-array, or a byte array.

baseARGB is a 32 bit array (ARGB) used for color bitmaps.

Q 6: Can you give me a simple/naive example of how to actually draw a
character?

 A 6: Simple naive example on how to get bitmap data from the T2K scaler object.
The example assumes a screen-coordinate system where the top leftmost
position on the screen is 0,0.
static void MyDrawCharExample(T2K *scaler, int x, int y)
{

uint16 left, right, top, bottom;
unsigned short R, G, B, alpha;
uint32 *baseARGB = NULL;
int xi, yi, xd;
char *p;

p = (char *)scaler->baseAddr;
baseARGB = scaler->baseARGB;

left= 0 + x;
top = 0 + y;
right= scaler->width + x;
228 Font Fusion FAQ

Chapter 9
bottom= scaler->height + y;

if (baseARGB == NULL && p == NULL)
return; /*****/

assert(T2K_BLACK_VALUE == 126);

MoveTo(x, y);

for (yi = top; yi < bottom; yi++) {
for (xi = left; xi < right; xi++) {

xd = xi - left;

#ifdef USE_COLOR
if (baseARGB != NULL) {
alpha = baseARGB[xd] >> 24;/* Extract alpha */
R = (baseARGB[xd] >> 16) & 0xff;/* Extract Red */
G = (baseARGB[xd] >> 8) & 0xff;/* Extract Green */
B = (baseARGB[xd] >> 0) & 0xff;/* Extract Blue */

} else {
alpha = p[xd];
alpha = alpha + alpha + (alpha>>5); /* map [0-126] to

[0,255] */
R = G = B = 0;/* Set to Black */

}

if (alpha) {
RGBColor colorA, colorB;/* RGBColor contains 16 bit color

info for R,G,B each */

GetCPixel(xi, yi, &colorB);/* Get the background color */
alpha++; /* map to 0-256 */
/* newAlpha = old_alpha + (1.0-old_alpha) * alpha */
/* Blend foreground and background colors */
R = (((long)(256-alpha) * (colorB.red>> 8) + alpha * R

)>>8);
G = (((long)(256-alpha) * (colorB.green>> 8) + alpha * G

)>>8);
B = (((long)(256-alpha) * (colorB.blue>> 8) + alpha * B

)>>8);

assert(R >= 0 && R <= 255);

colorA.red= R << 8;/* Map 8 bit data to 16 bit data */
colorA.green= G << 8;
colorA.blue= B << 8;
RGBForeColor(&colorA);/* Set the foreground color/paint

to colorA */
MoveTo(xi, yi);/* Paint pixel xi, yi with colorA */
LineTo(xi, yi);

}
#else

/* Paint pixel xi, yi */
if (p[xd>>3] & (0x80 >> (xd&7))) {
MoveTo(xi, yi);
LineTo(xi, yi);

}
#endif
Font Fusion FAQ 229

Bitstream Font Fusion® 4.5a Reference Guide
}

/* Advance to the next row */
p += scaler->rowBytes;
if (baseARGB != NULL) {

baseARGB += scaler->rowBytes;
}

}
}

Q 7: How do I draw a string with the above MyDrawCharExample()?

 A 7: Pseudo code on how to draw a string with the MyDrawCharExample()
referred to in Question 6

F16Dot16 x, y;
x = y = 12 << 16;

while (characters to draw..)
/* Render the character */
T2K_RenderGlyph(scaler, charCode, 0, 0,

 GREY_SCALE_BITMAP_HIGH_QUALITY,
 T2K_SCAN_CONVERT, &errCode);

assert(errCode == 0);
/* Now draw the character */
MyDrawCharExample(scaler, ((x + 0x8000)>> 16) + (scaler-

>fLeft26Dot6 >> 6),
 ((y + 0x8000)>> 16) - (scaler->fTop26Dot6 >>6));

x += scaler->xAdvanceWidth16Dot16;/* advance the pen forward */
/* Free up memory */
T2K_PurgeMemory(scaler, 1, &errCode);
assert(errCode == 0);

}

Q 8: How do I get grey-scale or monochrome output?

 A 8: For monochrome output set 5th input parameter to T2K_RenderGlyph
called greyScaleLevel equal to BLACK_AND_WHITE_BITMAP.

To get grey-scale output set 5th input parameter to T2K_RenderGlyph
called greyScaleLevel equal to GREY_SCALE_BITMAP_HIGH_QUALITY.

Q 9: How do I turn the T2K run-time hinting ON or OFF?

 A 9: T2K run-time hinting is enabled by turning ON the T2K_GRID_FIT bit in
the 6th input parameter to T2K_RenderGlyph called cmd.

It is disabled by turning OFF the T2K_GRID_FIT bit in the 6th input
parameter to T2K_RenderGlyph called cmd.

Q 10: I am using an interlacing TV as the output device. How do I make it
look good?
230 Font Fusion FAQ

Chapter 9
 A 10: First turn OFF grid-fitting to get an image with less sharp transitions.
(This also speeds up T2K). Then turn ON T2K_TV_MODE if you use integer
metrics and do not use fractional positioning to improve the quality.

Then you most likely also want to experiment with a simple filter to make
the image more blurry. A simple 3*3 convolution is probably sufficient. You
should probably "average" more in the y-direction than the x-direction to
avoid the interlacing flicker. Alternatively your hardware may have already
have this built in.

Q 11: A T2K call/method returned an error. What should the code do?

 A 11: T2K automatically deletes all of its objects when it hits an error. This
means that all references to T2K objects become invalid, and can no longer be
used.

Q 12: I noticed that there are a lot of asserts in the code. Why?

 A 12: Asserts are in the code to detect/prevent programmer errors. They are
only there to catch programmer errors.

In a release build you need to turn OFF asserts in "CONFIG.H" to increase
speed and to reduce the code size. However in debug builds please leave it
ON, to ensure that everything is working as intended.

Q 13: How do I decide what mapping table (character set) to use in a
TrueType or T2K font?

 A 13: Use Set_PlatformID(scaler, ID), and
Set_PlatformSpecificID(scaler, ID)

To use the Unicode mapping used by Windows do the following:
Set_PlatformID(scaler, 3);
Set_PlatformSpecificID(scaler, 1);

You can insert the code right after the NewT2K constructor.

Q 14: Can you explain the second parameter called code to
T2K_RenderGlyph?

 A 14: This normally specifies the character code for the character you wish to
render.

However if you wish to use the glyph index instead then set the
T2K_CODE_IS_GINDEX bit in the 6th input parameter to
T2K_RenderGlyph called cmd. The glyph index is simply a number from 0
to N-1, assuming the font contains N glyphs.
(N = T2K_GetNumGlyphsInFont(scaler);)
Font Fusion FAQ 231

Bitstream Font Fusion® 4.5a Reference Guide
Q 15: Does the outline winding direction matter in T2K?

 A 15: Yes, Postscript outlines should use the correct winding direction and
TrueType and T2K outlines also need to use the correct winding direction
which is actually the opposite of the Postscript direction. It matters because
the run-time-hinting process use this information to figure out where the
black and white areas are. For TrueType and T2K the direction should be such
that if you follow a contour in the direction of increasing point numbers then
the black (inside) area should be on your right.

Q 16: I need my fonts to be as small as possible. What should I do?

 A 16: You need to contact Type Solutions to have them translated to the T2K
format or to apply font compression.

Q 17: Can you explain ALGORITHMIC_STYLES in config.h?

 A 17: Use ALGORITHMIC_STYLES to enable algorithmic styling.

The 6th parameter to FF_New_sfntClass();
T2K_AlgStyleDescriptor *styling is normally set to NULL, but if
ALGORITHMIC_STYLES is enabled you can set it equal to an algorithmic
style descriptor. Here is an example using the algorithmic bolding provided
by T2K.
style.StyleFunc=tsi_SHAPET_BOLD_GLYPH;
style.StyleMetricsFunc=tsi_SHAPET_BOLD_METRICS;
style.params[0]=5L << 14;
sfnt0 = FF_New_sfntClass(mem, fontType, 0, in, NULL, &style,
&errCode);

You can also write your own outline based style modifications and use them
instead of the algorithmic bolding provided by T2K. Just model them after
the Type Solutions code for algorithmic bolding in "SHAPET.c".

Q 18: What is the story with USE_NON_ZERO_WINDING_RULE in
config.h?

 A 18: The recommended setting is to leave it ON. This determines what kind of
fill rule the T2K scan-converter will use. This enables a non-zero winding
rule, otherwise the scan-converter will use an even-odd filling rule. For
example the even-odd filling rule will turn an area where two strokes overlap
(rare) into white, but the non zero winding rule will keep such areas black.
For an embedded system where the fonts are well build and you do not have
overlapping strokes you will get a small (probably less than 1%) speed-up by
disabling this.

Q 19: In the internal part of the options, there is an option called
SAMPO_TESTING_T2K (!) which should be disabled. The only thing it
232 Font Fusion FAQ

Chapter 9
does is to enable ENABLE_WRITE and ENABLE_PRINTF. But those two
options are enabled unconditionally at the top of "don’t touch" part.
What is going on?

 A 19: You should leave it OFF, since it is in the "don’t touch" part. When T2K is
built as a font engine T2K_SCALER is defined (Not when built as a
translator) ifdef T2K_SCALER actually does an undef ENABLE_PRINTF
and an undef ENABLE_WRITE. Since the T2K font engine never does disk
writes and does not use printf statements.

However, when the code is undergoing testing at Type Solutions the T2K font
engine may write to disk for logging purposes and use printf statements.

Q 20: Are the functions used in the
T2K_DOCUMENTATION_CODING_EXAMPLE part of T2K.h the only public
APIs? Are there any other functions that might be useful to know?

 A 20: Yes, but the idea is that you should only use functions/methods visible in
T2K.H.

For instance T2K_MeasureTextInX() may be useful for quickly
determining lengths of text string. If you find a need to use something else
then let us know and if it makes sense we may bring out a public way to do it.

Do not rely on any function/methods outside of T2K since they may change
from release to release.

Q 21: I found that when a string contains a space, T2K_RenderGlyph
returns NULL baseAddr. Why is that? Do I have to check the existence
of space characters and advance x position accordingly?

 A 21: Since there is no bitmap to draw, T2K returns NULL baseAddr. Do not
check for space, just check for baseAddr == NULL instead.

In future with T2KE, check for (baseARGB == NULL && baseAddr ==
NULL)

Q 22: Are there functions for measuring widths and other metrics of
strings (such as X11s XTextWidth, and XTextExtent)?

 A 22: T2K_MeasureTextInX in T2K.H is equivalent to XTextWidth in X11.
(It measures the linear un-hinted width, it can not measure the hinted width
without actually rendering the characters).

There is no equivalent to X11s XTExtExtent, since this sort of function
typically would need to be implemented on top of the font-bit-map cache.
T2K does not cache the output data, so T2K clients typically implement a
cache on top of T2K so that the second time a character is requested it can
Font Fusion FAQ 233

Bitstream Font Fusion® 4.5a Reference Guide
come directly from the cache without invoking T2K. This sort of cache makes
things go fast. String wide functions should be implemented so that they
request information from the cache, to avoid T2K having to recompute
everything several times.

T2K also has two early experimental functions called
T2K_GetIdealLineWidth(), T2K_LayoutString().

They can help you to layout an entire line so that the total width is the ideal
linear width, while still using run-time hinted individual characters and
metrics. At least is attempts to do this by mostly putting the nonlinearities
into the space characters between the words.

Q 23: Can I edit T2K_BLACK_VALUE, and T2K_WHITE_VALUE so that I
get a different range for the grey-scale?

 A 23: No, you should not edit anything in T2K.H. They are there so that you can
put in an assert in your code and can automatically detect if they are ever
changed by Type Solutions in the future.

Q 24: What does T2K_TV_MODE do?

 A 24: It improves the results for situations where you do *not* use
T2K_GRID_FIT (T2K hinting) and you do use gray-scale such as the TV-
screen and you do use integer metrics.

It compensates for the integralization of the advance width by adjusting the
white space around the character *and* additionally it also ensures that we
get left right symmetry in the gray-scale for simple symmetrical characters.

If you use T2K_TV_MODE then turn OFF T2K_GRID_FIT.

 You should use T2K_TV_MODE when the following three conditions are true
You do not wish to use T2K_GRID_FIT (T2K hinting).
You are using gray-scale.
You are using integer metrics and not fractional positioning with
fractional metrics. (Only one version of each character per size).

Q 25: How do I get the type face name?

 A 25: You basically call T2K_SetNameString() (see below), at some point
after you have called Set_PlatformID(), and
Set_PlatformSpecificID().

It sets the public fields nameString8 or nameString16 in the T2K
object(structure).

To use Microsoft Unicode mapping and names you can use:
Set_PlatformID(scaler, 3);
234 Font Fusion FAQ

Chapter 9
Set_PlatformSpecificID(scaler, 1);/* 3,1 Picks Microsoft Unicode
character mapping. */
T2K_SetNameString(scaler, 0x0409, 4);/* Picks American English &
the full font name */

Q 26: How do I get native TrueType hint support in T2K?

 A 26: Follow the steps listed below:
A You require two additional .c and two .h files. (fnt.c/.h and

t2ktt.c/.h)
B #define ENABLE_NATIVE_TT_HINTS in config.h.
C Then turn on T2K_NAT_GRID_FIT (T2K-native-grid-fitting) in the cmd

parameter to T2K_RenderGlyph().

Q 27: How do I slant the the text (make algorithmic italics)?

 A 27: Set the transformation matrix this may:
trans.t00 = ONE16Dot16 * size;
trans.t01 = ONE16Dot16 * sin(italic_angle) * size;
trans.t10 = 0;
trans.t11 = ONE16Dot16 * size;

before calling T2K_NewTransformation().

Size is a number such as 16.

italic_angle is a number such as 12.0 degrees. In this case ONE16Dot16
* sin(12.0) would be 13626.

Q 28: I need the actual outline spline data. How do I get it?

 A 28: Turn on the T2K_RETURN_OUTLINES to the cmd parameter to
T2K_RenderGlyph(). This will set the public field glyph in T2K.

/*** Begin outline data */
GlyphClass *glyph;
/*** End outline data */
GlyphClass has public fields with the outline data.
Here are the relevant fields in GlyphClass:
shortcurveType;/* 2 for TrueType (2nd degree B-spline) outlines

and 3 for Type 1 (3rd Degree Bezier) */
shortcontourCount;/* number of contours in the character */
shortpointCount;/* number of points in the characters + 0 for the

sidebearing points */
int16*sp;/* sp[contourCount] Start points */
int16*ep;/* ep[contourCount] End points */
int16*oox;/* oox[pointCount] Unscaled Unhinted Points, add two

extra points for lsb, and rsb */
int16*ooy;/* ooy[pointCount] Unscaled Unhinted Points, set y to

zero for the two extra points */
/* Do NOT include the two extra points in sp[], ep[],

contourCount */
/* Do NOT include the two extra points in pointCount */

uint8 *onCurve;/* onCurve[pointCount] indicates if a point is on
or off the curve, it should be true or false */
Font Fusion FAQ 235

Bitstream Font Fusion® 4.5a Reference Guide
F26Dot6 *x, *y;/* The actual points in device coordinates. */

The character is made out of 'contourCount' contours.

The outline coordinates are stored in F26Dot6 format in the x and y arrays.
(6 fractional bits)

Each contour starts with the point number sp[contour], and ends with
with point number ep[contour].

sp[0] should typically be zero. The letter A typically has 2 contours, B has 3,
C has 1 etc.

The contours are self closing. Each point is either an "ON" or "OFF" curve
point.

A third degree Bezier is ON, OFF, OFF ON.

A 2nd degree parabola is ON, OFF, ON.

So a particular point n is described by x[n], y[n], onCurve[n].

NOTE: Please note that 2nd degree B-spline allow many consecutive OFF curve
points.

Q 29: I do not suppose you have any sample code which actually goes
through the process of getting and evaluating the outline data?

 A 29: To see how T2K breaks down the outlines into parabolas (or 3rd degree
beziers) and straight lines you can look at:

Make2ndDegreeEdgeList() for parabolas and

Make3rdDegreeEdgeList() for 3rd degree beziers inside T2KSC.c.

Once you have a parabola (described by three points A,B,C) it is described in
parametric form by
(1-t)*(1-t)*A + 2 *t *(1-t)*B + t*t*C

Once you have a 3rd degree Bezier (described by 4 points A,B,C,D) it is
described in parametric form by
(1-t)*(1-t)*(1-t)*A + 3*(1-t)*(1-t)*t*B + 3*(1-t)*t*t * C+ t*t*t *
D

In both cases t starts being equal to zero at point A and then it goes to one by
the last point.

Q 30: Can you explain the glyph specific metrics in more detail ?

 A 30: If you have regular left to right text, follow the horizontal text example
given on the next page:
236 Font Fusion FAQ

Chapter 9
Here is a lower case letter "g" showing the meanings of glyph specific metrics.
 t2k->fTop26Dot6 (26.6) This is the vertical line below, from base line to
the top of the bitmap.
 <----> t2k->fLeft26Dot6 (26.6)
 ^ *********** ^ t2k->height (integer number of scanlines) (32.0)
 | * * |
 | * * |
 | * * |
 | * * |
 | * * |
---------O v----************----|---O------------------
 ^ * | ^
pen pos- | * | |- next pen position.
 * |
 * * |
 *********** v

 <-------------> t2k->width (integer number of pixels) (32.0)
 <-------------------------> t2k->xAdvanceWidth16Dot16 (16.16)

So for horizontal text put the left top corner of the bitmap at
[((x + 0x8000)>> 16) + (scaler->fLeft26Dot6 >> 6), ((y + 0x8000)>>
16) - (scaler->fTop26Dot6 >>6)]

then advance the pen:
x += scaler->xAdvanceWidth16Dot16;
y += scaler->yAdvanceWidth16Dot16;

and for vertical text put the left top corner of the bitmap at
[((x + 0x8000)>> 16) + (scaler->vert_fLeft26Dot6 >> 6), ((y +
0x8000)>> 16) - (scaler->vert_fTop26Dot6 >>6)]

then advance the pen:
x += scaler->vert_xAdvanceWidth16Dot16;
y += scaler->vert_yAdvanceWidth16Dot16;

If the quality of the rotated text is important then you can use fractional
positioning where you maintain fractional accuracy for the pen-position and
pass in this information to RenderGlyph.

Since both the x and y position have 6 fractional bits for the position
(fractional positioning), for a given rotational transform there are 64*64 =
4096 possible bitmap shapes for the same character at that rotation. Here
you need to pass in the fractional position in x and y to RenderGlyph.

To do this you need to call RenderGlyph this way:
long iXPen, iYPen;
iXPen = ((x+ 0x8000) >> 16);
iYPen = ((y+ 0x8000) >> 16);
tmp = x - (iXPen <<16); xFracPenDelta = tmp >> 10; /* x is the X-
pen-position */
tmp = y - (iYPen <<16); yFracPenDelta = tmp >> 10 ;/* y is the Y-
pen-position */
T2K_RenderGlyph(scaler, charCode, xFracPenDelta, yFracPenDelta,
grayScaleLevel, cmd, &errCode);
Font Fusion FAQ 237

Bitstream Font Fusion® 4.5a Reference Guide
If the quality of rotated text is more important then the quality of the text at
regular 90 degree angles you should do this to advance the pen and at the
same time do not use hinting (turn OFF both T2K_NAT_GRID_FIT and
T2K_GRID_FIT)
x += scaler->xLinearAdvanceWidth16Dot16;
y += scaler->yLinearAdvanceWidth16Dot16;
instead of the below with hinting active (T2K_NAT_GRID_FIT):
x += scaler->xAdvanceWidth16Dot16;
y += scaler->yAdvanceWidth16Dot16;

Q 31: How do I use my own memory allocator and deallocator with T2K?

 A 31: CONFIG.H allows you to remap allocation, reallocation and deletion to
anything you want.

Q 32: What is the persistence of some of the different T2K data
structures needs to be? In particular: Does the input stream need to be
allocated for as long as the font is active and allocated? I would like to be
able to do this within the initialization stage:

memHandler_ = tsi_NewMemHandler(&err);
inStream = New_InputStream3(memHandler_, data, length, &err);
font_ = New_sfntClass(memHandler_, fontType, inStream, NULL, &err
);
...
scaler_ = NewT2K(font_->mem, font_, &err);
...
Delete_InputStream(inStream, &err);

That is, I want to delete the input stream and continue to use the font. Is
this feasible, or does the font continue to refer to the input stream even
after the sfntClass and the T2K structures have been built?

 A 32: The various object have to be deleted in the reverse order of creation. This
means that the InputStream object can only be deleted *after* you have
deleted the T2K and sfntClass object.

Q 33: Does the transformation need to exist as an external (application-
managed) structure after calling T2K_NewTransformation? If not, I
would like to be able to do this within the font initialization stage:

trans_ = new T2K_TRANS_MATRIX;
trans_->t00 = ONE16Dot16 * pointSize;
trans_->t01 = 0;
trans_->t10 = 0;
trans_->t11 = ONE16Dot16 * pointSize;
T2K_NewTransformation(scaler_, true, 72, 72, trans_, true, &err);
delete trans_; ?

 A 33: The T2K_TRANS_MATRIX structure can be deleted right after
T2K_NewTransformation().
238 Font Fusion FAQ

Chapter 9
Q 34: Our application will typically have between three and a dozen fonts
open and active at the same time. Am I correct to assume this is not
going to cause any problems within T2K?

 A 34: This is OK. You should have one tsiMemObject per font.

You can choose to keep multiple fonts open simultaneously and you can also
decide to have one or multiple T2K scalers simultaneously, or you could
decide to only allow one font open at a time.

You can also decide to either use memory based fonts when you create the
InputStream class or you can choose to use disk based fonts. These choices
are a trade-off between memory use and speed.

Q 35: I turn ON the T2K_RETURN_OUTLINES bit flag to
T2K_RenderGlyph and I am using the t2k->glyph structure.
Unfortunately my code can only handle 3rd degree Beziers. What can I
do when t2k->glyph->curveType == 2?

 A 35: First we encourage you to see if your current code can handle the 2nd
degree curves directly since they can be rendered quicker than 3rd degree
curves.

 If not, then this is how you go between them:
A First we need to find all straight lines and parabolas: The function

Make2ndDegreeEdgeList() function from T2KSC.c shows how that
is done:

B Now each Parabola (== 2nd degree Bezieer) is described by the points
A,B,C. Each 3rd degree Bezier is described by points P1,P2,P3,P4.

To map points [A,B,C] to [P1,P2,P3,P4] do this:

P1 = A;

P2 = (2B + A)/3;

P3 = (2B + C)/3;

P4 = C;

Q 36: What should I do if T2K returns an error?

 A 36: Once you get an error from T2K it frees up ALL memory. This means that
you need to set all references to T2K to NULL and not call any T2K delete
routines etc. Basically you have to start from the beginning again as if T2K
never existed when you get an error.

Q 37: Now, if an error is encountered, is it just that particular T2K that
must be "restarted", or all the T2K objects?
Font Fusion FAQ 239

Bitstream Font Fusion® 4.5a Reference Guide
 A 37: Not all T2K objects just all objects that shared the same tsiMemObject
have to be restarted. You should have one tsiMemObject per font.

Q 38: How do I make a colored bordered character?

 A 38: Just invoke invoked T2K_CreateBorderedCharacter (in
T2KEXTRA.c) right after T2K_RenderGlyph().

After this you can find the 32 bit colored bordered character in t2kscaler-
>baseARGB. The format is ARGB, 8 bits each.

Q 39: How do I drive LCD displays?

 A 39: There are two categories of LCD modes that you can use. Bitstream
recommends you use the new one to get the best result.

Old LCD mode:

 Here are step by step instructions:
A Enable the ENABLE_LCD_OPTION in config.h.
B Use FF_NewColorTable to get the RGB colors for LCD display. These

colors will be indexed by any bitmap produced by T2K. If your platform is
using a Color Lookup Table, you will need to set these colors in that
table.

This is how you extract the actual RGB colors from the T2K color table:
ff_ColorTableType *pColorTable;

/* for black text on white Set Rb = Gb = Bb = 0xff, and Rf =
Gf = Bf = 0. */

pColorTable = FF_NewColorTable(mem, Rb, Gb, Bb, Rf, Gf, Bf
);

/* For all the indeces in the bitmap you get the color by
doing this. */

/* pColorTable->N will contain # elements in the array */
/* pColorTable->ARGB[0] contains the first ARGB value */
ARGB = pColorTable->ARGB[byte index from the bitmap];
B = (ARGB & 0xff); ARGB >>= 8;
G = (ARGB & 0xff); ARGB >>= 8;
R = (ARGB & 0xff);

/* When done free up the color-table, but please do not call
this per-character for speed reasons. */

FF_DeleteColorTable(mem, pColorTable);
C Do not invoke either FF_SetBitRange255() or

FF_SetRemapTable(). If you need to shift the range, we recommend
using a filter function.
240 Font Fusion FAQ

Chapter 9
D When you invoke T2K_NewTransformation() set the xRes to 3 times
the yRes, since if you look close at the screen there are 3 times as many
colored pixels in the x direction as there are in the y direction. This tells
T2K we have a non-square aspect ratio where the x resolution is 3 times
higher than the y resolution.

E Then set T2K_LCD_MODE_4 in the cmd parameter and
GREY_SCALE_BITMAP_HIGH_QUALITY in the greyScalelevel
parameter to the function T2K_RenderGlyph().

F You now have an indexed color bitmap. When you draw the bitmap you
need to take into account that the bitmap contains indices for the colored
pixels.

New LCD mode:

 Here are step by step instructions:
A Enable the ENABLE_EXTENDED_LCD_OPTION in config.h.
B Use FF_NewColorTable to get the RGB colors for LCD display. These

colors will be indexed by any bitmap produced by T2K. If your platform is
using a Color Lookup Table, you will need to set these colors in that
table.

This is how you extract the actual RGB colors from the T2K color table:
ff_ColorTableType *pColorTable;

/* for black text on white Set Rb = Gb = Bb = 0xff, and Rf =
Gf = Bf = 0. */

pColorTable = FF_NewColorTable(mem, Rb, Gb, Bb, Rf, Gf, Bf
);

/* For all the indeces in the bitmap you get the color by
doing this. */

/* pColorTable->N will contain # elements in the array */
/* pColorTable->ARGB[0] contains the first ARGB value */
ARGB = pColorTable->ARGB[byte index from the bitmap];
B = (ARGB & 0xff); ARGB >>= 8;
G = (ARGB & 0xff); ARGB >>= 8;
R = (ARGB & 0xff);

/* When done free up the color-table, but please do not call
this per-character for speed reasons. */

FF_DeleteColorTable(mem, pColorTable);

C Do not invoke either FF_SetBitRange255() or FF_SetRemapTable(). If
you need to shift the range, we recommend using a filter function.

D There are four LCD modes in this new LCD category. They are horizontal
left-to-right RGB, horizontal left-to-right BGR ,vertical top-to-down
RGB and vertical Top-to-down BGR. So turn on the appropriate
bitflag in cmd. For example, if you need horizontal left-to-right RGB
Font Fusion FAQ 241

Bitstream Font Fusion® 4.5a Reference Guide
mode, set T2K_EXT_LCD_H_RGB in the cmd parameter. Set
GREY_SCALE_BITMAP_HIGH_QUALITY in the greyScalelevel
parameter to the function T2K_RenderGlyph().

E You now have an indexed color bitmap. When you draw the bitmap you
need to take into account that the bitmap contains indices for the colored
pixels.

F Unlike the old LCD mode, you do NOT have to set the xRes to 3 times
in the T2K_NewTransformation().

Q 40: What is the difference between T2K_TV_MODE_2 and
T2K_TV_MODE, and also between T2K_LCD_MODE and
T2K_LCD_MODE_2?

 A 40: The _2 modifier activates a special light-weight y hint strategy which
improves the quality. It for instance makes the antialiased bitmap pattern on
top and bottom of an 'o' symmetrical. It is recommended for both TV and
LCD output for the best quality.

The regular LCD and TV modes already also make such characters left-right
symmetrical for optimal quality.

For best quality, T2K_LCD_MODE_4 is recommended because it employs
native hints.

Q 41: What is a tsiMemObject object, what does it do?

 A 41: It is an object that handles all memory allocation, deallocation and
reallocation.

The reason we have it done by one object instead of direct calls to the OS is
that the tsiMemObject object does a lot of error checking. This creates a
more stable product.

For instance it puts special markers both before and after allocated memory
so that we can detect any attempts to write outside the allocated memory. It
also detects any memory leaks and attempts to free no-pointers or or already
freed memory and other memory errors. Basically the tsiMemObject
provides a solid foundations for the product.

Q 42: Why do we need one tsiMemObject per font?

 A 42: We could have shared this. But it seems we get a slight performance
advantage using only one per font.

The current implementation of tsiMemObject also has a maximum limit on
the number of pointers it can allocate.

Q 43: What is a InputStream object, what does it do?
242 Font Fusion FAQ

Chapter 9
 A 43: The InputStream object provides a level of abstraction for the core.
Basically the InputStream object exposes certain methods that T2K uses to
access the data. This means that T2K does not need to know if the data is in
memory, on the disk, or a across a network, etc.

This provides a cleaner design. The InputStream object also checks for out-
of bounds read attempts. This error checking together with the nice
abstraction InputStream provides produces a more solid and robust design
and therefore a better product.

Q 44: What does a sfntClass do?

 A 44: The sfntClass is an internal class that represents a font. It is shared by
all supported font formats.

Q 45: What is a T2K class, what does it do?

 A 45: The T2K object represents an instance of the font scaler. Main task for the
fonts scaler is to produce good looking bitmap images for characters at
different sizes and transformations like rotation.

Q 46: T2K_NewTransformation transform which item to what?

 A 46: T2K_NewTransformation is a method that informs the T2K object
about the current transformation and size is.

Q 47: What does T2K_RenderGlyph() do?

 A 47: It produces the bitmap image that we want.

Q 48: I am using one of the Font Fusion stroke fonts and the output is too
light! Can you make a heavier/bolder font?

 A 48: Font Fusion stroke font has variable weight. You are probably just using
the default weight which is pretty light. The default is at 0.5 in 16.16 space.
The weight is variable between 0.0 and 1.0 in 16.16 space. For instance try
this:
if (T2K_GetNumAxes(scaler) == 1) {

T2K_SetCoordinate(scaler, 0, 0x10000*7/10); /* instead of
default 0x10000/2 */
}

You can do this setting right after T2K_NewTransformation();

You can tune the number to whatever looks best in your circumstance.

Q 49: Please explain more about anti-aliasing and how to blend letters
with a random background image.
Font Fusion FAQ 243

Bitstream Font Fusion® 4.5a Reference Guide
 A 49: Instead of setting greyScaleLevel to the function T2K_RenderGlyph
to BLACK_AND_WHITE_BITMAP set it to
GREY_SCALE_BITMAP_MEDIUM_QUALITY and Font Fusion will return a
gray-scale bitmap. This is the same as an alpha mask.

Think of an alpha value and a bitmap filled with alpha values (an alpha mask)
conceptually as a partially transparent glass window. Also think of the alpha
value as conceptually going between 0.0 (fully transparent) to 1.0 (fully
opaque).

When the alpha value is 0.0 you see everything behind the window (the
background), but not the foreground. When the alpha value is 1.0 you only
see the foreground color (or image).

When the alpha value is 0.5 you see a blend consisting of 50% the
background and 50% the foreground. To perfectly blend the foreground and
background you need to pixel-by-pixel blend the background pixel values and
foreground pixel values according to this linear formula
newPixelColor = alpha*foregoundPixelColor + (1.0-alpha) *
backgroundPixelColor

When Font Fusion operates in its normal greyscale mode then a value of
T2K_BLACK_VALUE (126) in the alphamask returned by Font Fusion
corresponds to alpha == 1.0, and 0 corresponds to alpha == 0.

Q 50: What are the benefits of using Cache Manager in Font Fusion?

 A 50: Cache manager speeds up the performance of your application. If a
character exists in the cache, the Cache Manager will deliver the bitmap to
the calling application instead of Font Fusion having to create the character
each time it is needed. The trade off is memory; the more memory allocated
for cache purposes, the more characters can be stored in the cache.

Q 51: What files should I look at for the Cache Manager?

 A 51: There are two files that involve the cache: "cachemgr.c" and
"cachemgr.h". "cachemgr.h" contains documentation, a coding example
and the actual Cache Manager API, while the source code is contained in the
file "cachemgr.c".

Q 52: How much memory should I allocate for the cache?

 A 52: The Cache Manager uses the amount of memory allocated to it at the time
of creation. No memory is allocated by the Cache Manager on its own. The
amount of memory that is set at creation time will hold all the characters in
the cache as well as the cache framework itself. Therefore, the final amount
of usable memory for the cache is the total declared at creation time minus
the size of the cache management structures.
244 Font Fusion FAQ

Chapter 9
The amount of memory desired depends on the proposed uses of the
application. For example, if large 500 line bitmaps will be created, then
allocate plenty of memory for the cache manager. If large gray scale images
are needed, allocate over 100K for the cache to use. The more memory the
cache is given, the more characters it can hold. As the Cache Manager runs
out of space the cache will get rid of the oldest characters that it was holding
in order to make room for the newly created characters.

Q 53: How do I use the Cache Manager?

 A 53: There is not much for the application to do with the cache. It can create
the cache, make render glyph calls through it, flush and delete. Filter
functions are attached to Font Fusion through the cache. The function calls
are:

FF_CM_New (), FF_CM_Delete (), FF_CM_RenderGlyph (),
FF_CM_Flush (), and FF_CM_SetFilter ().

To use the Cache Manager:
A Call the Cache Manager constructor FF_CM_New specifying the amount

of memory to use
B Set a filter tag with FF_CM_SetFilter
C Create characters with FF_CM_RenderGlyph

Q 54: I noticed that T2K, the Font Manager AND the Cache Manager
each have RenderGlyph functions. What is the story?

 A 54: They were designed that way so they could be independent of each other
and work together. The real RenderGlyph work is always done in T2K Core.
If you are using the Cache Manager, the FF_CM_RenderGlyph() will first
check the cache for the glyph or call another module to render the glyph into
the cache. It will use either the Font Manager RenderGlyph function or call
the T2K core. The Font Manager RenderGlyph function will look for the
requested glyph from among the font fragments of the font, and then call the
T2K_RenderGlyph() function.

Q 55: How does the Cache Manager know if the Font Manager should
render a glyph? What is the configuration requirement for me to make
these work together?

 A 55: There are no configuration requirements. You just build the Font or Cache
Managers and use them at run time. If you "register" a font with the Manager,
when you create and select a strike, the Font Manager stamps or marks itself
in the T2K Class to let the Cache Manager know it is present. If you are using
Font Fusion FAQ 245

Bitstream Font Fusion® 4.5a Reference Guide
the Cache Manager, it will respect this little stamp, which consists of enough
information for the Cache Manager to use the Font Managers API.

Q 56: Tell me more about the setting up of a post-processing filter and
why does this involve the cache manager?

 A 56: Font Fusion allows filters to be registered with the core. Each filter has a
separate ID. By setting that filter ID with the cache the ID will be stored with
the created bitmap in the cache. This is used as further search criteria when
retrieving characters. Filter functions are registered through the cache
manager to the core. If a filter function has been set up the core will call this
function.
246 Font Fusion FAQ

Index
Index

A
AdvanceWidth16Dot16 110
algorithmic bold

Stroke-Fonts 131
algorithmic italics 69
ALGORITHMIC_STYLES 35, 60, 157
AlgStyleDescription 62
allocation 29
allocPtr 51, 174
anti-aliasing 16, 73, 107, 117, 177, 178
applications supported 12, 187
architecture 12, 187
ARGB 81
Assert 32
assert statements 32
auto-hinting 39, 72
auxiliary metrics files 148, 150
aw 191
awSet 191

B
baseAddr 78, 79, 91
baseARGB 78, 79, 81, 92
baseLength 105
baseSet 105
Bb 135
Beziér curves 81, 84
Bf 135
bit flags 117, 118
bitflags 117, 134, 177, 178
bitmap data 78
bitmap output 71
BitmapFilter 179
bitmaps 107
bits 117, 118
BLACK_AND_WHITE_BITMAP 71
bordered character 81
bSet 61, 123, 125
b-spline curve 80
bufSize 133

C
Cache Manager 22
calculating

character sizes 158
cArr array 109
cCode 189, 190
CFF 36
char_code 176, 178
character map 66
character sizes

calculating 158
characters, rendering 82
charCode 105, 108, 110, 189
CJK fonts 144
CLIENT_ASSERT 32
CLIENT_ASSERT 33
CLIENT_FREE 29
CLIENT_FREE 33
CLIENT_JMPBUF 34
CLIENT_LONGJMP 34
CLIENT_MALLOC 29
CLIENT_MALLOC 33
CLIENT_REALLOC 29
CLIENT_REALLOC 33
CLIENT_SETJMP 34
CLIENT_STRCMP 34
CLIENT_STRLEN 34
CLIENT_STRNCMP 34
clientArgs 51, 174
cmap 66, 151
cmd 77, 116, 161, 176, 189, 190
cmd field bits 118
code 116, 161
colored, bordered character 81
colorizing 17, 89
compact font formats 44
compile-time options 33
compressed font

compile-time-option 36
formats 46–47

COMPRESSED_INPUT_STREAM 36
computer monitor 77
config.h 24, 145
ep 80
sp 80
contourCount 80
Core 19
Corner 110
curveTypeOut 103
247

Bitstream Font Fusion® 4.5a Reference Guide
D
data 55, 56
dataSize 189, 190
Delete_InputStream 53
Delete_InputStream() 59
DeleteT2K() 102
dest_ram 57
devices supported 15
Dimension 110
doSetUpNow 115
dynamic fonts 20, 21

E
embedded bitmaps 107
ENABLE_2D_EMBOLD 35
ENABLE_2DEGREE_OPTIMIZED_PFR 37
ENABLE_32BIT_CACHE_TAG 41
ENABLE_AUTO_GRIDDING 39
ENABLE_AUTO_GRIDDING_CORE 39
ENABLE_BDF 36
ENABLE_CACHE_COMPRESSION 41, 172
ENABLE_CACHE_RESIZE 41, 172
ENABLE_CACHING_EBLC 41
ENABLE_CFF 36
ENABLE_CHECK_CONTOUR_DIRECTIO

N 35
ENABLE_CLIENT_ALLOC 34
ENABLE_CLIENT_ERROR 41, 42
ENABLE_COMMON_DEFGLYPH 41, 172
ENABLE_DROPOUT_ADAPTATION 39
ENABLE_EXTENDED_LCD_OPTION 40
ENABLE_EXTRA_PRECISION 38
ENABLE_FF_CURVE_CONVERSION 39
ENABLE_FRACTIONAL_SIZE 38
ENABLE_GASP_TABLE_SUPPORT 37
ENABLE_KERNING 35, 106
ENABLE_LCD_OPTION 40
ENABLE_LINE_LAYOUT 35, 106
ENABLE_MAC_RFORK 37
ENABLE_MAC_T1 35
ENABLE_MEM_VALIDATION 34
ENABLE_MORE_TT_COMPATIBILITY 40
ENABLE_MULTIPLE_FILTERS 38, 172
ENABLE_NATIVE_T1_HINTS 39
ENABLE_NATIVE_TT_HINTS 38, 77
ENABLE_NON_RAM_STREAM 40, 57
ENABLE_OPENTYPE_VERT 37
ENABLE_ORION 36
ENABLE_OTF 36
ENABLE_PCL 40, 187

ENABLE_PCLETTO 41, 187
ENABLE_PFR 36
ENABLE_POSTHINT_ALGORITHMIC_ST

YLE 35
ENABLE_PSEUDOFONT_SUPPORT 37
ENABLE_SBIT 36
ENABLE_SBITS_COMPRESSION 36, 101
ENABLE_SBITS_TRANSFORM 36, 101
ENABLE_SMARTSCALE 38, 125
ENABLE_SPEEDO 36
ENABLE_STRKCONV 39
ENABLE_T1 35
ENABLE_T1_FORCE_ENCODING 37,

130
ENABLE_T2KE 33
ENABLE_T2KS 36
ENABLE_UNDERLINEFILTER 38, 172
ENABLE_UNICODE_32_SUPPORT 37
ENABLE_WINFNT 36
enableSbits 115
encType 129
enumTypefaceCallBack() 152, 154
enumTypefaceCallback() 154
eo_get_char_data() 40, 187, 189
errCode 55, 56, 59, 62, 63, 102, 103, 111,

115, 116, 127, 149, 150, 153, 156,
159, 160, 161, 174, 175, 176, 178,
179, 216

error 216
Errors 42
even-odd fill 79
extended LCD modes 74

compile-time options 40
ExtractPureT1FromMacPOSTResources() 1

27
ExtractPureT1FromPCType1() 127

F
F26Dot6 80
faceName16 154
faceName8 154
FF_CM_Class

*FF_CM_SetCacheSize() 17
2, 180

FF_CM_Delete() 175
FF_CM_Flush() 178
FF_CM_GlyphInCache() 177
FF_CM_New() 102, 176, 177, 179, 180
FF_CM_New() 174
FF_CM_RenderGlyph() 21, 22, 146, 173,
248

Index
176, 177
FF_CM_RenderGlyph() 176
FF_CM_SetCompDecomp() 172, 180
FF_CM_SetFilter() 90, 94
FF_CM_SetFilter() 179
FF_Delete_sfntClass() 62, 63
ff_fm.h 145
FF_FM_AddTypefaceStream() 147, 150,

152
FF_FM_CreateFont() 148, 156
FF_FM_Delete() 153
FF_FM_DeleteFont() 159, 160
FF_FM_EnumTypefaces() 145, 152, 154
FF_FM_MAX_DYNAMIC_FONTS 147
FF_FM_New() 149
FF_FM_RenderGlyph() 161
FF_FM_SelectFont() 151, 159
FF_FM_SetLanguageID() 152
FF_FM_SetNameID() 152
FF_FM_SetPlatformID() 150
FF_FM_SetPlatformSpecificID() 151
FF_FM_SetXYResolution() 159
FF_FontTypeFromStream() 62
FF_ForceCMAPChange() 134
FF_GetTTTablePointer() 133
FF_GlyphExists() 134
FF_ModifyColorTable() 137
FF_New_sfntClass() 62
FF_NewColorTable() 135
FF_PSNameToCharCode() 138
FF_Set_T2K_Core_FilterReference() 94,

103, 116
FF_Set_T2K_Core_FilterReferen

ce() 102
FF_SetVertPos(193
FF_T1_Encoding 129
FF_T2K_FilterFuncPtr 91, 102, 179
filter function 17, 89
filterParamsPtr 179
filters

multiple 99
FilterTag 90, 179
FIT File Structure 194
flushCache 148, 156
font 103
font formats supported 13, 187
font fragments 20, 144
Font Fusion Core 19
Font Information Table 194
Font Manager 20
font metrics 150

font name
getting 100

font units 120
font_code 176, 178
FONT_TYPE_1 62
FONT_TYPE_2 62
FONT_TYPE_PCL 188
FONT_TYPE_PCLETTO 188
FONT_TYPE_PFR 62
FONT_TYPE_TT_OR_T2K 62
fontCode 159, 160, 161
fontNum 62
fontType 62
font-wide metrics 86
Force Type1 Encoding 129
Format 16 Font Header 192
fractional pixel positioning 72
freePtr 51, 174
funcptr 102
Functions For Use With Stroke-Fonts 131
FUnits 120

G
Galley Character 192
Gaussian fuzz-filtering 17, 89
Gb 135
Gf 135
gIndex 189, 190
Glow Filter 97
glyph 79
glyph metrics 93
glyph without pixels 79
GlyphClass 80
glyphIndex 110, 111
glyph-specific metrics 87
grayscale 72
grayscale output 71
GREY_SCALE_BITMAP_HIGH_QUALITY

71
greyScaleLevel 71, 116, 161, 176, 177, 178
greyScaleLevel field bits 117
gridding 39, 72

H
high-quality display device 77
hinting 77
hints 38, 39
HPXL_MetricsInfo_t 190
HPXL_metricsInfo_t 191
249

Bitstream Font Fusion® 4.5a Reference Guide
I
ID 66, 67
id 57
in1 62
in2 62
index 156
input streams 20, 147
InputStream 30, 53, 57
int FF_SetBitRange255 138
int32 T2K_GetNumAxes() 131
integer metrics 72
Intellifon 40
Intellifont 187
interlaced TV device 72
internal_baseARGB 91
italics 69

K
Kanji fonts 36
kerning 35, 139, 148, 150
kerning pairs 105
kerning value 119, 120

L
languageID 119, 152
Latin fonts 72
LAYOUT_CACHE_SIZE 35
LCD devices 73
LCD modes 74–76

compile-time options 40
using 75

LCD TVs 73
length 55, 56, 127
level 116
line layout 35
linear text layout 139
LinearAdvanceWidth16Dot16 110
logical fonts 20, 147
low-quality display device 77
lsb 191
lsbSet 191

M
MAKE_SC_ROWBYTES_A_4BYTE_MULTI

PLE 40
Make2ndDegreeEdgeList() 81, 84
Make3rdDegreeEdgeList() 84
MAX_PURGE_LEVEL 2 116

mem 55, 56, 62, 103, 127
Memhandler 26, 50, 53
memory handle 26, 50
merging fonts dynamically 20
metrics

font-wide 86
glyph-specific 87
printer 191

metrics information 86–88
metricsInfo (printer) 190, 191
monochrome output 71, 77
multilingual capabilities 14
multiple filters 99
MyDrawCharExample 82
MyDrawCharExample() 84

N
nameID 119, 152
native TrueType hinting 77
New_InputStream() 56
New_InputStream3 55
New_NonRamInputStream() 56
NewT2K() 103
nonRamID 56
non-zero winding rule 79
numBytes 57
numChars 112

O
obliquing text 69
offset 57
onCurve 80
operating systems supported 12
Optimized 2-degree PFRs 44
OTF 36
outline output 71
outline spline data 79
outline winding direction 78

P
pairCountPtr 105
parabolas 84
params 97, 102
pCharData 189, 190
PCLeTTo fonts 191
pclread.c 187
pclread.h 187
PF_READ_TO_RAM() 57
PFB 127
250

Index
pFM 150, 151, 152, 153, 154, 156, 159,
160, 161

PFR 36, 44
ultra compact 44

physical fonts 20, 147
PlatformID 64
platformID 150
platformSpecificID 151
ppTbl 133
pScaler 161
PSName 138

R
Rb 135
readFunc 56, 57
reallocPtr 51, 174
refNum 127
RenderGlyph() 20, 21, 22, 89, 146, 173
rendering characters and strings 82
REVERSE_SC_Y_ORDER 40
Rf 135
ROM_BASED_T1 35
rotating text 18, 70
run-time hinting 77, 78

S
sample code 162
SBIT 36
sbits 107

enabling 101
scan converter 79
scan converters 40
second-degree b-spline curve 80
Set_PlatformID() 66, 119
Set_PlatformSpecificID() 67, 119
sfntClass 60, 62, 146, 193
sizeofCache 174
SmartScale 124
smearing 17, 89
SPEEDO 36
spline curve 80
spline data 79
src 127
standard LCD modes 40, 74

compile-time options 40
StreamA 150
StreamB 150
streams 148, 150
strikes 147
strings, rendering 82

Stroke-Fonts
algorithmic bold 131
functions 131

styling 60, 62, 156
subpixel positioning 17

T
t 52, 59, 61, 63, 97, 102, 103, 104, 105,

106, 108, 112, 115, 116, 119, 120,
125

T2K 12, 44, 61
t2k 102, 123
T2K class 90, 146
T2K scaler 151
T2K scaler object 69
t2k.h 24, 88, 145
T2K_AlgStyleDescriptor 60, 156
T2K_BLACK_VALUE 71
T2K_BorderfilterParams 91
T2K_CODE_IS_GINDEX 116, 189, 190
T2K_ConvertGlyphSplineType() 1

03
T2K_CreateBorderedCharacter() 81, 90,

92
T2K_CreateGlowCharacter() 97
T2K_CreateOutlineCharacter() 100
T2K_CreateUnderlineCharacter() 104
T2K_CreateUnderlineCharacter(

) 104
T2K_EXT_LCD_H_BGR 74
T2K_EXT_LCD_H_RGB 74
T2K_EXT_LCD_V_BGR 74
T2K_EXT_LCD_V_RGB 74
T2K_FindKernPairs() 35, 37
T2K_FindKernPairs() 105
T2K_FontSbitsAreEnabled() 101,

106
T2K_FontSbitsExists() 101, 106
T2K_ForceT1Encoding() 129
T2K_GaspifyTheCmds() 107
T2K_GetBytesConsumed(108
T2K_GetGlyphIndex() 111
T2K_GetGlyphIndex() 101, 108
T2K_GetIdealLineWidth() 88, 111
T2K_GetIdealLineWidth() 108
T2K_GetNumGlyphsInFont() 108
T2K_GetT1Encoding() 129
T2K_GlowFilerParams 97
T2K_GlyphSbitsExists() 101, 111
T2K_GRID_FIT 71, 72, 77
251

Bitstream Font Fusion® 4.5a Reference Guide
T2K_KernPair() 105
T2K_LayoutString() 88, 109
T2K_LayoutString() 111
T2K_MeasureTextInX() 35
T2K_MeasureTextInX() 112
T2K_MultipleFilter() 99, 112
T2K_MultipleFilter_Add() 113
T2K_MultipleFilter_Delete() 99,

114
T2K_MultipleFilter_Init(114
T2K_MultipleFilterParams 112
T2K_NAT_GRID_FIT 71, 72, 77
T2K_NewTransformation() 69
T2K_NewTransformation() 115
T2K_PurgeMemory() 69, 94, 115
T2K_PurgeMemory() 116
T2K_RenderGlyph() 69, 71, 78, 82, 115,

116, 146, 173
T2K_RenderGlyph() 116
T2K_RETURN_OUTLINES 79, 81
T2K_SetBaselineShift 61
T2K_SetCoordinate() 131
T2K_SetFracSizeMode(123
T2K_SetNameString() 65
T2K_SetNameString() 119
T2K_SetSmartScale 125
T2K_TRANS_MATRIX 115, 156
T2K_TransformXFunits() 119
T2K_TransformYFunits() 120
T2K_TV_MODE 72
T2K_TV_MODE_2 72
T2K_VERT_SUB 126
T2K_VERTICAL 126
T2K_WHITE_VALUE 71
T2KCharInfo 108, 109, 111
t2kextra.c 81, 90
T2KLayout 108, 111
T2KS 36
t2ksc.c 81, 84
t2kScaler 66, 67
tag 133
text 112

rotation 70
text transformation

obliquing & italics 69
texture mapping 17, 89
theCache 175, 176, 177, 178, 179, 180
theScaler 176, 178
third-degree Beziér curves 81, 84
trans 115, 156
transformation matrix 115, 156

TrueDoc 12, 36
TrueType fonts 41, 187
TrueType hinting 77
TrueType hints 38
tsb 191
tsbSet 191
tsi_AllocMem 91
tsi_ClientAllocMethod 51
tsi_ClientDeAllocMethod 52
tsi_ClientReAllocMethod 52
tsi_DeAllocMem() 106
tsi_DeleteMemhandler 26, 50, 54
tsi_DeleteMemhandler() 52
tsi_FastAllocMem () 93
tsi_FastDeAllocN() 93
tsi_NewMemhandler 26, 50, 53
tsi_NewMemhandler() 51
tsiMemObject 26, 30, 50, 53
tt_get_char_data() 41, 187, 190
TV devices 72
TV monitor 77
TV_MODE 39
Type 1 35
Type 1 hints 39
Type 2 36

U
ultra compact PFRs 44
USE_NON_ZERO_WINDING_RULE 79
USE_SEAT_BELTS 38
Using FIT at Run-Time 210

V
value 193
Vertical Exclusion 192
Vertical Rotation 192
Vertical Translation 192
void FF_ModifyColorTable() 137
void T2K_SetCoordinate() 131

W
white-space characters 79
winding direction 78

X
xFracPenDelta 116, 161, 176, 178
xKernValuesInFUnits 112
xRes 115, 159
252

Index
XTextWidth() 88
xValueInFUnits 119

Y
yFracPenDelta 116, 161, 176, 178
yRes 115, 159
yValueInFUnits 120
253

Bitstream Font Fusion® 4.5a Reference Guide
254

	Table of Contents
	Bitstream Font Fusion® 5.0a Reference Guide
	Font Fusion Overview
	General Information
	Architectural Overview
	Applications & Operating Systems Supported
	Font Formats Supported
	Multilingual Capabilities
	Devices Supported
	High-Quality Output

	Using the Font Fusion Core
	Using the Font Fusion Font Manager
	Merging Fonts Dynamically

	Using the Font Fusion Cache Manager

	Getting Started with the Font Fusion Core
	Getting Started
	What Files Should I Look at First?
	How can I build the Font Fusion demos?
	What is the Best Way to Get Started?
	What are the Functions in Font Fusion?
	Should I Use Public APIs Only?

	Allocating Memory
	Using Your Own Memory Allocator and De-allocator with Font Fusion
	The InputStream Object
	The tsiMemObject Object
	Using One tsiMemObject per Font
	If You Have a lot of Fonts Open and Active at the Same Time

	Assert Statements
	Optional: Redefining “Assert”

	Compile-Time Options
	Errors
	What Happens When Font Fusion Returns an Error
	What to DO if Font Fusion Returns an Error
	Font Fusion Objects You Need to Restart if Font Fusion Returns an Error

	Font Size options
	Compact Font Formats
	Compressed Font Formats

	Font Fusion Core API
	tsi Functions: Overview
	The tsiMemObject Object
	Using One tsiMemObject per Font
	Creating and Destroying a Memory Handle

	tsi Functions
	tsiMemObject *tsi_NewMemhandler(
	void tsi_DeleteMemhandler(

	InputStream Functions: Overview
	The InputStream Object
	Creating an Input Stream
	If You Have a lot of Fonts Open and Active at the same Time
	Using Your Own Memory Allocator and De-allocator with Font Fusion

	InputStream Functions
	InputStream *New_InputStream3(
	InputStream *New_InputStream(
	InputStream *New_NonRamInputStream(
	void PF_READ_TO_RAM(
	void Delete_InputStream(

	sfntClass Functions: Overview
	The sfntClass Object
	ALGORITHMIC_STYLES
	T2K_SetBaselineShift(

	sfntClass Functions
	sfntClass *FF_New_sfntClass(
	void FF_Delete_sfntClass(

	PlatformID Functions: Overview
	The PlatformID
	Setting the Platform and Platform- Specific ID
	Mapping Table to Use with TrueType and Native T2K Fonts
	Getting the Font Name

	PlatformID Functions
	Set_PlatformID(
	Set_PlatformSpecificID(

	T2K Functions: Overview
	The T2K Scaler Object
	Modifying the Transformation Matrix
	T2K_RenderGlyph(): Getting Bitmap and Outline Output
	T2K_RenderGlyph(): Hinting
	T2K_RenderGlyph(): Rendering Characters and Strings
	T2K_RenderGlyph(): Sample Code for Rendering Characters and Strings
	Metrics
	Using Filters
	void T2K_TV_Effects(
	Using Glow Filter
	void T2K_CreateGlowCharacter(
	Using Multiple Filters
	void T2K_CreateOutlineCharacter(
	Getting the Font Name
	Enabling “sbits”

	T2K Functions
	void DeleteT2K(
	void FF_Set_T2K_Core_FilterReference(
	T2K *NewT2K(
	void T2K_ConvertGlyphSplineType(
	void T2K_CreateUnderlineCharacter(
	T2K_KernPair *T2K_FindKernPairs(
	char T2K_FontSbitsAreEnabled(
	char T2K_FontSbitsExists(
	void T2K_GaspifyTheCmds(
	int T2K_GetBytesConsumed(
	uint16 T2K_GetGlyphIndex(
	void T2K_GetIdealLineWidth(
	int T2K_GlyphSbitsExists(
	void T2K_LayoutString(
	uint32 T2K_MeasureTextInX(
	void T2K_MultipleFilter(
	void T2K_MultipleFilter_Add(
	void T2K_MultipleFilter_Delete(
	void T2K_MultipleFilter_Init(
	void T2K_NewTransformation(
	void T2K_PurgeMemory(
	void T2K_RenderGlyph(
	void T2K_SetNameString(
	void T2K_TransformXFunits(
	void T2K_TransformYFunits(

	Functions for Fractional Sizing
	T2K_SetFracSizeMode(

	Functions for SmartScale
	T2K_SetSmartScale(

	Functions for Vertical Writing
	Functions for Translating Font Data
	unsigned char *ExtractPureT1FromPCType1(
	char *ExtractPureT1FromMacPOSTResources(

	Functions to Force Type1 Encoding
	T2K_GetT1Encoding(
	T2K_ForceT1Encoding(

	Functions For Use With Stroke-Based Fonts
	int32 T2K_GetNumAxes(
	void T2K_SetCoordinate(

	Additional Functions
	uint8 *FF_GetTTTablePointer(
	int FF_GlyphExists(
	void FF_ForceCMAPChange(
	ff_ColorTableType *FF_NewColorTable(
	void FF_ModifyColorTable(
	int FF_PSNameToCharCode(
	int FF_SetBitRange255(

	Sample Code
	Macintosh
	T2K Scaler

	Font Manager API
	Getting Started with the Font Manager
	Why Use the Font Manager?
	What Files Should I Look at First?
	How Do I Use the Font Manager?
	Why Do Font Fusion, the Font Manager, and the Cache Manager Have a RenderGlyph() Function?
	How Does the Cache Manager Know if the Font Manager Should Render a Glyph? What's the Configuration Requirement for Me to Make These Work Together?
	How Many Fonts Can I Handle at Once?
	Are There Any Other Configuration Parameters for the Font Manager?
	Why Does FF_FM_AddTypefaceStream() Take Two Stream Arguments?
	Why Does FF_FM_CreateFont() Include a flushCache Parameter?
	Is There a Coding Example?

	Functions for Creating, Configuring, and Deleting the Font Manager
	FF_FM_Class *FF_FM_New(
	void FF_FM_AddTypefaceStream(
	void FF_FM_SetPlatformID(
	void FF_FM_SetPlatformSpecificID(
	void FF_FM_SetLanguageID(
	void FF_FM_SetNameID(
	void FF_FM_Delete(

	Function for Installing Fonts and Getting Font Information
	enumTypefaceCallback() Function
	int FF_FM_EnumTypefaces(

	Functions for Creating and Using Fonts
	uint16 FF_FM_CreateFont(
	void * FF_FM_SetXYResolution(
	T2K * FF_FM_SelectFont(
	void FF_FM_DeleteFont(
	void FF_FM_RenderGlyph(

	Sample Code

	Cache Manager API
	Getting Started with the Cache Manager
	Overview of the Cache Manager
	If You Want to Write Your Own Cache Manager
	Why Do Font Fusion, the Font Manager, and the Cache Manager Have a RenderGlyph() Function?

	Functions for Creating and Deleting the Cache Manager
	FF_CM_Class *FF_CM_New(
	void FF_CM_Delete(

	Functions for Working with the Cache Manager
	void FF_CM_RenderGlyph(
	int FF_CM_GlyphInCache(
	void FF_CM_Flush(
	void FF_CM_SetFilter(
	FF_CM_Class *FF_CM_SetCacheSize(
	void FF_CM_SetCompDecomp(

	Sample Code

	Font Fusion API for Printer Developers
	General Information
	Compile-Time Options
	Font Types
	Callback Functions
	int eo_get_char_data(
	int tt_get_char_data(
	metricsInfo

	Format 16 Font Header Support
	FF_SetVertPos(

	Font Information Table
	FIT File Structure
	Using FIT at Run-Time

	Text Flows
	Overview
	Font Fusion Core
	Font Manager
	Cache Manager
	Font Manager and Cache Manager

	Error Codes
	Font Fusion Core Error Codes.
	Font And Cache Manager Error Codes

	Font Fusion FAQ
	Performance Tuning Tips
	FAQ

	Index

